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a Instituto de Biología de Organismos Marinos (IBIOMAR), CONICET, Boulevard Brown 2915, U9120ACD, Puerto Madryn, Chubut, Argentina 
b Ornis Italica, Piazza Crati 15, 00199, Rome, Italy 
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A B S T R A C T   

The study of parental food provisioning is essential for understanding the breeding ecology of birds. We con
ducted the first study using accelerometry to detect food provisioning in birds, using Support Vector Machine 
(SVM) models to identify when adults feed chicks of three different age classes. Accelerometers were attached to 
the head of adult female Imperial Shags (Leucocarbo atriceps), and various attributes derived from the acceler
ation signals were used to train SVM models for each chick age class. Model performance improved with chick 
age class, with SVM models achieving high overall accuracy (>88%) and highest sensitivity in older chick 
categories (>91%). However, precision values, especially for younger chicks, remained relatively low (between 
26% and 45%). The application of a time filter based on the minimum duration of the observed food provisioning 
behaviours for each chick age category, improved model performance by reducing false provisioning behaviours, 
particularly in the model for older chicks, which showed the highest precision (72.4%). This study highlights the 
effectiveness of accelerometry and machine learning in studying parental food provisioning in birds, providing a 
rapid and accurate data collection method to complement traditional techniques. The described methodology 
can be applied to any bird species that exhibits distinctive movements while feeding its offspring and has suitable 
characteristics for attaching an accelerometer to the body part that best captures this movement. Finally, it is 
hoped that the results of this study will contribute to future research on key questions in parental investment 
theory and reproductive strategies in birds.   

1. Introduction 

Monitoring parental food provisioning is essential for understanding 
key aspects of evolutionary and breeding ecology in birds (Trivers, 1974; 
Price and Ydenberg, 1995; Schwagmeyer et al., 2008) such as parental 
trade-offs between the costs and benefits of investing resources in cur
rent versus future offspring (Stearns, 1992; Royle et al., 2004), and the 
factors that influence food allocation within a brood (Glassey and For
bes, 2002; García-Navas and Sanz, 2010). Analysis of movement pat
terns during food provisioning provides valuable insights into the 
efficiency of adults in delivering food to their chicks, the role of both 
sexes in brood food provisioning (Welcker et al., 2009), and 
parent-chick interactions (Svagelj, 2009; Svagelj and Quintana, 2011; 
Giudici et al., 2017). Classic methods for studying food provisioning in 
birds include direct behavioural observation and video recordings 

(Takahashi et al., 2003; Gladbach et al., 2009; Low et al., 2012). 
Although these methods have been widely used, they present limita
tions. For instance, they are inadequate for accurately quantifying 
fine-scale movements such as short and abrupt manoeuvres like head 
thrusts during food regurgitation or head and neck shakes of adults 
while provisioning their offspring. Moreover, manual video analysis is a 
tedious task and nearly impossible to scale up to large datasets (Brown 
et al., 2013; Sonerud et al., 2014). 

Over the past few years, animal-attached remote sensing tags known 
as bio-loggers, have overcome the limitations mentioned above. These 
tags allow researchers to obtain information on the lives of wild animals 
that would be difficult to acquire through direct observations (Brown 
et al., 2013; Campera et al., 2023; Watanabe et al., 2023). Particularly, 
the use of tri-axial accelerometers has revolutionised the measurement 
of animal posture and movement (Shepard et al., 2008; Brown et al., 
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2013). Furthermore, dynamic body acceleration (DBA) metrics, in the 
form of overall dynamic body acceleration (ODBA) and vectorial dy
namic body acceleration (VeDBA), provide a powerful proxy for 
movement-based metabolic rate (Wilson et al., 2019). Tri-axial accel
erometers have been successfully used in seabird research to identify 
prey acquisition events (Carroll et al., 2014; Del Caño et al., 2021; 
Sutton et al., 2021), measure flight performance (Watanabe et al., 2011; 
Williams et al., 2015) and determine accurate time-activity budgets 
(Gómez-Laich et al., 2011, 2013; Dean et al., 2013; Chimienti et al., 
2022). 

Classifying animal behaviour using acceleration data is a time- 
consuming task due to the large datasets obtained when attaching 
these sensors to wild animals for extended periods (Nathan et al., 2012, 
2022). For this reason, during the last years, much emphasis has been 
placed on the employment of machine learning algorithms to automat
ically classify behaviours (Chakravarty et al., 2019; Bidder et al., 2020; 
Del Caño et al., 2021; Chimienti et al., 2022; Hathaway et al., 2023). A 
commonly used algorithm is the Support Vector Machine (SVM) (Cortes 
and Vapnik, 1995; Martiskainen et al., 2009). The SVM is essentially a 
binary classifier that aims to solve the classification problem by 
searching for a separating hyperplane that maximises the distance to the 
nearest observation. Specifically for seabirds, SVMs have been used to 
classify acceleration data from different behaviours, such as prey cap
ture, flight, and diving (Carroll et al., 2014; Del Caño et al., 2021; Sutton 
et al., 2021; Chimienti et al., 2022). 

The Imperial Shag (Leucocarbo atriceps) is a colonial seabird that 
inhabits the southern region of South America (Yorio et al., 1999). In 
this monogamous and biparental species, adults feed their chicks 
through regurgitation (Schreiber and Burger, 2001), and this behaviour 
is accompanied by distinctive head movements (Snow, 1963; Dunn, 
1975; Giudici et al., 2017). It is reasonable to assume that the vigour of 
head movements associated with food provision varies with the 
phenological development of the chicks (Dunn, 1975; Olver, 1984; 
Goutner et al., 1997). The latter would be related to parents giving 
larger and less processed prey items to older chicks (Dunn, 1975). The 
aim of this study was to identify food provisioning behaviour in adult 
Imperial Shags feeding chicks of different age classes using tri-axial 
accelerometer data. To achieve this, we applied bimodal SVM models 
to the data and evaluated the performance of the models in discrimi
nating between non-feeding and feeding events of chicks of three 
different age classes. We predicted that food provisioning events would 
be classified more accurately for the older than for the younger chicks. 
To our knowledge, this is the first study that explores the potential of 
accelerometry and machine learning to study food provisioning in birds. 

2. Materials and methods 

Fieldwork was conducted at Punta León Imperial Shag colony 
(43◦04ʹ S, 64◦29ʹ W), Chubut, Argentina, between mid-November and 
mid-December of 2019, 2021 and 2022. A total of 36 breeding females 
(14, 18 and 4 from 2019, 2021 and 2022, respectively) were instru
mented with a tri-axial accelerometer (Technosmart, Rome, Italy, 50 
mm in length, 8 mm in width, 3 mm in height, 2 g) on the head. The total 
weight of the device (i.e., 2 g) was less than 1% of the average adult 
female body mass (Svagelj and Quintana, 2007), being this percentage 
below the accepted recommendation of 3% (Kenward, 2001). Acceler
ometers were set to record data at 50 Hz in each of the three orthogonal 
axes: surge (AccX, anterior-posterior axis), sway (AccY, lateral axis), and 
heave (AccZ, dorso-ventral axis). In this study, we only assessed the 
provisioning behaviour of females, assuming that the movements 
involved in this behaviour are the same for both sexes. The reason why 
we worked with females only is that this sex feeds the chicks during the 
day (Harris et al., 2013), making it easier to video record the behaviours 
(see below). Adult females were distinguished from males by the 
vocalisations (males ‘honk’ and females ‘hiss’) (Malacalza and Hall, 
1988; Svagelj and Quintana, 2007). Each female was gently removed 

from the nest using a specially designed hook to bring the animal closer 
to the handler without damaging the brood (see Gómez-Laich et al., 
2022). Once close to the handler, the shag’s neck was taken out of the 
crook by grasping the neck behind the head with one hand and using the 
second hand to gather the wings up against the body (Gómez-Laich 
et al., 2015). Accelerometers were attached to the feathers of the head 
using Tesa® tape, following Wilson et al. (1997) (Fig. 1), taking 
particular attention that the devices were placed in the same position on 
each animal. In all cases, the instrumentation procedure was completed 
in less than 5 min and birds were immediately returned to the nest. Since 
females leave the colony to forage early in the morning (see Harris et al., 
2013), the instrumentations took place in the afternoon (5:00 p.m. 
approximately) on the day before the behavioural video recordings were 
performed (see below) and left on the birds for 24 h. All birds carrying 
devices returned to the colony and resumed normal nest attendance and 
breeding behaviour. 

During the first month of the chick-rearing period, breeding adults 
usually perform a single foraging trip per day with females foraging in 
the morning and males in the afternoon (Harris et al., 2013). Thus, 
before females returned from their foraging trip near midday, chicks 
from each brood were captured from the nest using a 1.5 m long wooden 
extension with a small basket/cup on its end. The age of each chick was 
estimated by measuring the tarsus with a digital caliper (nearest 0.01 
mm) (Svagelj et al., 2019). To recognise each chick within a brood, 
nestlings were marked on the head and neck with nontoxic paint. 
Markings faded from chicks’ feathers after 24 h (Giudici et al., 2017). 

2.1. Video data analysis 

To detect the acceleration signal associated with food provisioning 
by females, the first feeding session (i.e., started when the female began 
providing food to the nestlings and ended after 15 min of not delivering 
food to any of the chicks in the brood) from each instrumented bird was 
recorded by means of a video camera (Sony DCRSR88®). The cameras 
were placed between 2 and 3 m from the nest to avoid bird’s 
disturbance. 

The video recordings were analysed using Kinovea, a free video 
player software (Kinovea Creative Commons Attribution, 2006). A food 
provisioning event was defined as the interval from the time a chick was 
observed to place its head inside a female’s mouth to obtain the regur
gitated food until the time the chick took out its head from the female. 
The fed chicks were categorised into three age categories, according to 
the stage of their development (Svagelj et al., 2019). Category A chicks 

Fig. 1. Imperial Shag (Leucocarbo atriceps) equipped with a 2-g tri-axial 
accelerometer on the head using black Tesa® tape. Photo: Andrea Benvenuti. 
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(less than or equal to 7 days old) belong to the slowest zone of the 
growth curve of this species, category B chicks (between 8 and 14 days 
old) were in the exponential phase of the curve, and category C chicks 
(between 15 and 21 days old) were in the phase where growth begins to 
slow down. All the activities performed by female birds while they were 
at the nest and not feeding their chicks were grouped into a single 
behavioural category called non-feeding. 

2.2. Acceleration data analysis 

The acceleration data recorded by the devices consists of two com
ponents: the static component, which is dependent on gravity and de
scribes the animal’s posture, and the dynamic component, which reflects 
the movement of the body (Shepard et al., 2008; Wilson et al., 2008; 
Brown et al., 2013). These two components are measured in each of the 

Fig. 2. Illustration showing how the heave, surge and sway acceleration measurements relate to the shag’s head movements and how the pitch and roll angles relate 
to the shag’s head angle (a). Example of the heave, surge and sway acceleration signals, and the smoothed VeDBA from the head of an Imperial Shag feeding a 
category A chick (less than or equal to seven days old) (b), feeding a category B chick (between eight and 14 days old) (c), and feeding a category C chick (between 15 
and 21 days) (d). Illustrations of an adult head showing the head position during feeding (between dotted lines) and non-feeding of a chick are shown in panel b. 
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three-dimensional axes (i.e., surge, sway and heave) (Fig. 2A). The static 
component of each acceleration axis was isolated by applying a running 
mean of 2 s following Shepard et al. (2008). The static component of 
each channel was used to compute the pitch and roll angles (i.e., rota
tional motion) and smoothed over 1 s applying the equations presented 
in Gunner et al. (2020). The dynamic component of each acceleration 
channel was calculated as the difference between raw and static accel
eration. The dynamic component of each axis was used to compute the 
Vectorial Dynamic Body Acceleration (VeDBA) following Qasem et al. 
(2012). VeDBA values were smoothed over 1 s to eliminate individual 
strides (Wilson et al., 2019). 

The mean, minimum, maximum, and standard deviation of the 
VeDBA, of the pitch and roll angles, and of the three raw and dynamic 
acceleration axes were computed using a sliding sample window of 1 s 
(equaling 50 samples of data), with a 0.98 s overlap (49 samples of 
data). This resulted in the calculation of 36 features (9 × 4). 

To obtain a labelled data set, the acceleration data were matched to 
the behaviours previously identified from the videos using custom 
matching functions in the R version 4.1.1 (R Core Team, 2021). 

2.3. Training and testing the Support Vector Machine 

To identify food provisioning behaviour from accelerometry data, we 
used the SVM algorithm. Conceptually, the SMV algorithm aims to find a 
separating hyperplane that maximises the margin between two obser
vational classes (Cortes and Vapnik, 1995). To find the hyperplane, the 
algorithm is based on a subset of training data points that are closest to 
it, known as support vectors (Kuhn and Johnson, 2013). As the distance 
formula employed in the SVM method is highly dependent on the scale 
of the variables (Lantz, 2019), acceleration features were rescaled using 
the min-max normalisation. We implemented a binary SVM using the R 
package “e1071” (Meyer et al., 2017) setting the kernel type to “linear” 
and a cost value of 1. We ran three SVMs, one for each chick category. 
For each model, we randomly divided the individuals with segmented 
and annotated data into a training data set (70% of the individuals) and 
a testing data set (30% of the individuals). If the instrumented adult had 
fed chicks from different age categories (e.g., nests containing chicks 
between six and 10 days old), we incorporated each provisioning 
behaviour into the corresponding model. The training data set was used 
to train and validate the model by performing 
Leave-One-Individual-Out-cross-validation (LOIO) (Chakravarty et al., 
2019), which ensures to account for variability among individuals. LOIO 
consisted of training the model using the pooled data of all individuals 
except one and then validating this model on data from the individual 
left out (Chakravarty et al., 2019). This process was repeated until each 
individual was used for validation. For each iteration, the training data 
set was balanced by randomly selecting similar proportions of feeding 
and non-feeding behaviours across individuals, while the validation 
dataset (i.e., from the animal left out) was not balanced. Afterwards, we 
applied a time filter based on the minimum duration of a food transfer 
event for each chick’s age category, these being: 2 s for categories A and 
B and 3 s for category C. Finally, we used the confusionMatrix from the R 
package “caret” to summarise the models’ performance before and after 
the application of the time filter. These matrices enabled us to deter
mine, for each validation individual, the proportion of True Positives 
(VP), False Positives (FP), True Negatives (TN), or False Negatives (FN). 
The confusion matrices obtained from each validation individual (before 
and after the filter was applied) were then combined to produce 
aggregate confusion matrices from which the mean of the following 
performance statistics was calculated: overall accuracy, sensitivity, and 
precision. 

Finally, to evaluate the performance of the final model, we employed 
the testing data for each chick category set. From the results of the LOIO, 
we randomly chose one model for each of the three chick categories. 
These selected models were then utilised to classify the respective 
testing data sets. The classification process was carried out using the 

“predict” function from the R package “e1071”. Afterwards, we applied 
the time filter to each chick category and compared the success of the 
predictions before and after adding the filter using confusion matrices. 

3. Results 

3.1. Head acceleration patterns 

A total of 359 food provisioning events were identified during 17 h of 
video recording. Of these, 86 (24%) corresponded to category A chicks, 
166 (46%) to category B chicks and 107 (30%) to category C chicks. The 
duration of food provisioning events varied between chick age cate
gories. For category A chicks, the mean duration of food provisioning 
events was 12.5 ± 7.7 s (range: 2–58 s), while for category B chicks the 
mean duration of food provisioning events was 14.6 ± 10.1 s (range: 
2–63 s) and for category C chicks 18.4 ± 11.7 s (range: 3–70 s). Food 
provisioning by adult females showed a distinct pattern of head move
ments in the three acceleration axes, with greater oscillations in the 
three axes when feeding older chicks (Fig. 2b, c and d). During food 
provisioning, anterior-posterior head movements exhibited a cyclical 
pattern with values fluctuating around − 1 g when females fed chicks of 
less than 2 weeks old (Fig. 2b and c), and with values fluctuating be
tween − 1 g and − 2 g when feeding chicks older than 14 days (Fig. 2d). 
Adults’ head movements along the dorso-ventral axis were similar when 
feeding chicks of the three different age categories, with values oscil
lating around 0.5 g and reaching values of − 2 g when feeding category C 
chicks (Fig. 2b, c and d). When feeding category A and B chicks, the 
lateral head movements of adults did not show much variation and were 
characterised by values around 0 g. However, when feeding older 
chicks, the head movements of females showed greater oscillations in 
the lateral acceleration profile, with clear peaks between 2 g and − 2 g 
(Fig. 2b, c and d). A greater effort or intensity in the provisioning 
movements, as indicated by the smooth VeDBA values, was observed in 
older chicks (Fig. 2). For younger chicks (categories A and B), the 
smooth VeDBA values oscillated around 0.5 g (Fig. 2b and c), whereas 
for the older chicks (category C) the smooth VeDBA values were 
considerably higher, averaging around 1.5 g (Fig. 2d). 

3.2. SVM performance 

Almost five million data points were used to run the models for all 
chick categories (Table 1) and more than 88% of the data points were 
correctly classified (overall accuracy values above 88%; Table 2) when 
the time filter was not applied. The highest sensitivity was found for the 
category B chicks’ model (i.e., how often a food provisioning event was 
correctly identified), followed by the category C and A chicks’ models 
(96, 91 and 88%, respectively) (Table 2). For the three chick age cate
gories, model precision values (i.e., how often the model was right when 
predicting food provisioning behaviour) were relatively low (<56%), 
with this metric performing better for category C chicks (Table 2, see 
Appendix Tables S2–S3 for the results of LOIO per individual and the 
aggregate confusion matrices). 

After the application of the time filter, the performance of the three 
models improved, in particular by reducing the number of false food 
provisioning behaviours (i.e., false positives, see Appendix Table S4). 
Under these conditions, the model for category C chicks showed the 

Table 1 
Number of data points of each behaviour class used to run LOIO cross-validation.  

Chick 
category 

N 
(individuals) 

Behaviour 

Food provisioning 
events 

Non-feeding 
events 

Total 

A 7 47,864 1,873,150 1,921,014 
B 10 77,768 1,977,251 2,055,019 
C 9 68,716 1,033,501 1,102,217  
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highest overall classification accuracy (95%), followed by the category B 
chicks’ model (almost 95%) and the category A chick’s model (almost 
91%) (Table 2). The category B chicks model performed better than the 
category A and C models in terms of sensitivity (Table 2). Category C 
model showed the highest precision value (72.4%) (Table 2, see Ap
pendix Tables S4–S5 for the results of LOIO per individual and the 
aggregate confusion matrices). 

The predicted behaviours of each of the test data sets (one for each 
chick category, see Appendix Table S6) achieved high overall accuracies 
ranging from 90 to 97% (Table 3). For age categories A and B chicks, the 
application of the time filter improved the precision of the models 
(Table 3). However, for category C chicks, the application of the time 
filter resulted in a lower sensitivity (Table 3). High inter-individual 
variation was observed in the precision and sensitivity values of the 
individuals from the B and C chick categories (Table 3, see Appendix 
Tables S7–S10). 

4. Discussion 

In this study, we demonstrate the utility of accelerometer data in the 
identification of food provisioning behaviour exhibited by avian species. 
Analysis of head acceleration profiles of 36 adult female Imperial Shags 
during food provisioning events revealed a distinct pattern characterised 
by negative values on the surge acceleration axis as a product of the 
downward tilt of the head during this behaviour. The recorded rapid 
oscillations detected along both the surge and lateral axes, conform to 
the anterior-posterior and lateral displacements typical of regurgitation 
events. These movements are commonly accompanied by vigorous head 
shaking to facilitate the release of stored food from the gular pouch to 
feed the chicks (Nelson, 2006). The application of SVM models across 
varying chick-age categories demonstrated a significant positive asso
ciation between model predictive efficacy and chick age. This trend is 
likely attributed to escalating movement vigour inherent in food pro
visioning behaviour as chicks progress through developmental stages. 
Adults feed older chicks with larger and less processed prey items (i.e., 
whole fish as opposed to the semi-liquid food that is provided to juve
niles), which are transferred with more vigorous movements (Olver, 
1984; Goutner et al., 1997). 

Our study shows indicate promising prospects concerning the effi
cacy of the models in discerning feed and non-feed events. This is sup
ported by the high overall accuracy values (>90%), indicating the 
algorithms’ ability to accurately predict most instances. Although this 
metric is important and provides a clear measure of model performance, 
it is also necessary to consider the other, more specific metrics. Previous 
research (Carroll et al., 2014) has highlighted the significance of eval
uating model performance in predicting the target class (i.e., precision) 

when using a SVM model to solve a binary classification problem. In our 
case study, precision was consistently the poorest metric. The observed 
phenomenon stemmed from a predisposition of the three models to
wards overestimating occurrences of food provisioning events. Despite 
the implementation of a time filter yielding an enhancement in the 
metric’s efficacy by mitigating instances of false positives or erroneous 
alarms across all three models, the attained values consistently remained 
below 73%. Low precision values could be attributed to the fact that 
while at the nest, adults engage in numerous fine-scale head movements. 
From an accelerometry perspective, these movements are similar to the 
motions associated with provisioning the chicks. For example, adults 
frequently arrange nest material (i.e., branches and/or seaweed brought 
by their partner), accommodate chicks, and groom their partner or 
themselves (Olver, 1984; Schreiber and Burger, 2001). In other words, 
the non-feeding behaviour category probably included movements 
where the acceleration pattern was very similar to that of food provi
sioning events, leading to the misclassification of behaviours mostly 
when feeding chicks less than one week old. Previous studies in other 
avian species such as the Golden Eagle (Aquila chrysaetos) have also 
shown low levels of precision for behaviours that are either complex or 
varied (Sur et al., 2017). Future studies, or further exploration of this 
dataset, should include more behavioural categories to distinguish food 
provisioning events with greater certainty. Enhancing the accuracy of 
identifying feeding events can also be achieved by concurrently instru
menting adult birds offering food and chicks exhibiting begging 
behaviour. Detecting chick begging behaviour of a chick prior to a 
feeding event would increase the reliability of the identified food pro
visioning event (by integrating chick and adult acceleration information 
to train a single model that can determine that an adult provisioning 
event must be preceded by chick begging). Hidden Markov Models 
(HMMs) may provide a viable solution for assessing these issues, as they 
effectively account for the dependency between current and past be
haviours (Schafer et al., 2020). However, it should be noted that in
strumentations of adults and chicks requires more effort, more devices to 
be used simultaneously and a greater amount of data to be analysed. 

The use of the accelerometry technique to determine food provi
sioning behaviour offers at least four key advantages over traditional 
methods. Firstly, it allows a greater number of animals to be studied 
simultaneously. Secondly, it can be used to document food provisioning 
behaviour continuously over longer time periods, ranging from days to 
weeks depending on the programmed schedule and battery used. It is 
also independent of the position of the observer relative to the moni
tored individual, overcoming the limitations imposed by visual obser
vations or video recordings when the individual of interest is out of 
sight. For instance, behavioural detection is frequently impeded when 
chicks are oriented away from the camera or observer, when the focal 

Table 2 
Results of the LOIO cross-validations without applying (SVM) and applying the filter (SVM + filter) based on the minimum duration of a food provisioning event for 
each of the three chick categories (i.e., A, B and C). Performance metrics were calculated separately for each validation individual. The mean and standard deviation 
across validation individuals are shown. Overall Accuracy (Ove. Acc.); Sensitivity (Sen.) and Precision (Prec.).  

Approach A B C 

Ove.Acc. (%) Sen. (%) Prec. (%) Ove.Acc. (%) Sen. (%) Prec. (%) Ove.Acc. (%) Sen. (%) Prec. (%) 

SVM 88.0 ± 7.3 88.4 ± 15.5 20.4 ± 11.3 92.5 ± 4.9 96.0 ± 3.6 37.5 ± 19.2 92.4 ± 6 91.1 ± 11.2 55.8 ± 21.1 
SVM + filter 90.8 ± 6.4 84.1 ± 20.9 26.1 ± 15.9 94.7 ± 3.5 94.3 ± 5.4 45.4 ± 21.1 95.1 ± 3.4 81.7 ± 26.6 72.4 ± 22.6  

Table 3 
Performance of the final selected models without applying a filter (SVM) and applying the filter (SVM + filter) based on the minimum duration of a food provisioning 
event for each of the three chick categories. Performance metrics were calculated separately for each test individual. The mean and standard deviation across test 
individuals are shown. Overall Accuracy (Ove. Acc.); Sensitivity (Sen.) and Precision (Prec.).  

Approach A B C 

Ove.Acc. (%) Sen. (%) Prec. (%) Ove.Acc. (%) Sen. (%) Prec. (%) Ove.Acc. (%) Sen. (%) Prec. (%) 

SVM 90.3 ± 2.4 98.3 ± 1.4 4.5 ± 2.7 96.2 ± 2.3 68.6 ± 29.5 55.1 ± 18.4 93.7 ± 4 44.4 ± 32.6 56.1 ± 46.1 
SVM + filter 92.0 ± 1.8 98.2 ± 1.5 5.4 ± 3.4 97.5 ± 1.2 67.8 ± 34.8 75.3 ± 17.5 93.3 ± 3.3 29.1 ± 27.7 59.0 ± 46.1  
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adult rotates, or when other nearby animals obstruct the view of the 
observed individual. In addition, as accelerometers can be attached to 
adults for several hours or even days, they can record the at sea foraging 
effort. Integrating information on foraging behaviour with that on food 
provisioning would provide new insights into how the effort each 
member of the pair makes at sea to get food is reflected in the amount of 
food they deliver to the chicks and in how they distribute it among 
siblings. Furthermore, our findings will play a pivotal role in elucidating 
theoretical concepts concerning sex-specific roles in food provisioning, 
the allocation of food by parents as a mechanism for brood reduction, 
and the accurate investigation of food transfer from parents to chicks. 
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