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ABSTRACT: Depth-dependent buoyancy resulting from the compression of body-associated air is a
major force modulating energy expenditure in diving seabirds, yet quantification of its effects in free-
living animals is problematic. Between November 2006 and December 2008, we used multiple chan-
nel loggers (daily diaries [DDs]); recording triaxial acceleration, depth and speed, during foraging of
34 Magellanic penguins Spheniscus magellanicus from 3 colonies in Argentina to derive a new proxy
for energy expenditure, overall dynamic body acceleration (ODBA). Assuming ODBA to be linearly
related to power, energy expenditure was highest during dive descent, nearer the surface and in
those dives terminating at greater depths due to steeper descent angles. Swim speed during descent
was invariant of maximum dive depth. Calculated energy expenditure during the bottom phase of the
dive was invariant of depth, but energy expenditure of birds returning to the surface was lowest at
any given depth for birds that had engaged in deeper dives due to the effects of buoyancy. Four birds,
equipped with beak angle-measuring sensors as part of the DDs, captured 89 % of their prey (nor-
mally pelagic school fish) during fast passive ascents using buoyancy to aid in capture. Details from
one of these birds showed that this passive ascent occurred at a mean velocity of 1.94 m s™! for a mean
of 2.02 s; ascent angles during such rushes were steeper when the bird was deeper, which was pre-
sumed to reflect a response to the diminished buoyant force at greater pressures. Passive ascents
during prey capture appear to be an important mechanism for Magellanic penguins to capture fast-
moving prey with minimal energy expenditure.
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INTRODUCTION

Consideration of the best way for animals to acquire
food has been the subject of intense debate since the
seminal work edited by Krebs & Davies (1997) formal-
ized the concept of optimal foraging. Since then, the
complexities relevant for optimized foraging have
made it clear that solutions may change radically
according to how well the animals are informed (Dall
et al. 2005) of circumstances such as the motility
(Ydenberg & Dill 1986), temporal variation (Newman
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et al. 1995) or spatial distribution of food (Fauchald &
Tveraa 2006, Stephens et al. 2007).

Air-breathing, diving marine vertebrates are exposed
to very particular conditions during foraging. They
have to partition their time into periods at the surface
when they acquire oxygen but cannot obtain food, and
periods underwater when they may search for food
during which they use up their limited oxygen re-
serves. The rate at which the oxygen is used up, and
therefore the time that the animals can spend under-
water searching for food, depends on metabolic rate,
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and this depends, inter alia, on swim speed (Culik et al.
1994, Schmid et al. 1995) and buoyancy (Lovvorn 1999,
Lovvorn et al. 1999, Watanuki et al. 2005). That both
swim speed and buoyancy should modulate metabolic
rate is a physical certainty (cf. Sato et al. 2002), and this
has led to a suite of theoretical studies on how diving
animals should best allocate effort and time to maxi-
mize foraging success (e.g. Mori 1998, Mori et al. 2002,
Halsey et al. 2003, Heath et al. 2007), but quantifica-
tion of the energetic costs of both is problematic.

Authors such as Ancel et al. (2000) have looked at
metabolic rate as a function of swim speed using water
flumes; others, such as Culik et al. (1991, 1996), used a
still-water swim channel to document how energy
expenditure changes with speed in a suite of air-
breathing diving animals ranging from penguins to
beavers (e.g. Allers & Culik 1997, Bethge et al. 1997,
Borgwardt & Culik 1999). However, all animals used in
such experiments were obliged to swim underwater at
shallow depths (around 0.5 m) so that buoyancy issues,
which change substantially with depth in animals that
contain appreciable body volumes of air, particularly
birds (Wilson et al. 1992), could not be addressed.
Experimental attempts to determine how buoyancy
relates to metabolic power in deeper tanks which allow
such birds to move freely in 3 dimensions have been
fraught by the complexities of how the recorded costs
relate to both the mechanical work used for speed and
in counteracting buoyancy as well as changes in ther-
moregulatory costs that vary with plumage thickness
which, itself, varies with depth (e.g. Enstipp et al.
2006a). This latter problem is particularly germane in
cormorants which have minimal insulation in wettable
plumage (Gremillet et al. 2005) and which have been
used extensively in work of this type (Schmid et al.
1995, Enstipp et al. 2006a,b, 2007).

The present study used a relatively new measure of
the metabolic cost of mechanical power to examine the
costs of foraging in free-living penguins. The measure
is based on the principle that the extent of muscular
contraction involved in body movement produces a
corresponding dynamic acceleration of the whole
body. Quantification of this overall dynamic body ac-
celeration (ODBA), which can be measured by tri-
axial accelerometers attached to animals, should thus
correlate with metabolic power (Wilson et al. 2006).
Indeed, various authors have shown good linear fits
between the rate of oxygen consumption and ODBA
for 12 very different species (including cormorants,
ducks, penguins, rodents, lagomorphs and pinnipeds;
Fahlman et al. 2008, Halsey et al. 2008, 2009a,b, Green
et al. 2009).

In the present study we used triaxial acceleration
data taken from deployments of tags on foraging Mag-
ellanic penguins Sphensicus magellanicus. First we

derived an estimate for how oxygen consumption
relates to ODBA using published data on the rate of
oxygen consumption (VO,) measurements from swim-
channel birds under defined conditions together with
our ODBA measurements from free-living penguins
exhibiting equivalent behaviours. We then examined
how Magellanic penguin dive performance (e.g. rate
of change of depth, speed versus metabolic power)
affects oxygen consumption. Finally, we used data
from beak angle sensors deployed on penguins (Wil-
son et al. 2002b) as indicators of prey capture to see
how birds perform to catch prey and how this relates to
oxygen usage, and considered whether the approach
managed oxygen reserves judiciously.

MATERIALS AND METHODS

Fieldwork. Data were collected from 34 Magellanic
penguins Spheniscus magellanicus brooding small
chicks at 3 colonies (San Lorenzo, 42°04'S, 63°21'W,
n = 7 birds; Bahia Bustamante, 45°10'S, 66°30'W, n =
19; San Julian, 49°16'S, 67°42'W, n = 8) in Patagonia,
Argentina between November 2006 and December
2008 inclusive. Birds were carefully removed from
their nests before being equipped with multichannel
archival tags, called daily diaries (DD; Wilson et al.
2008), using overlapping strips of Tesa tape (Wilson
et al. 1997). The devices (max. dimensions 70 x 40 X
10 mm, constituting 3.8% of the penguin cross-
sectional area, mass = 68 g, given a streamlined shape)
were placed on the lower back, dorsal midline, to min-
imize drag (Bannasch et al. 1994), and the complete
fitting procedure took ca. 4 min.

A subset of these birds (n = 8) was additionally fitted
with inter-mandibular angle sensors (IMASEN) (Wil-
son et al. 2002b). These units consist of a Hall sensor
(4 x4 x 2 mm) linked by a cable (350 x 3 mm, length x
diameter) to the main body of the DD. The Hall sensor
was glued (Poxipol) to the dorsal surface of the upper
beak and the cable between the sensor and the main
DD body was fixed to the head, neck and upper back
of the penguin, at ca. 5 cm intervals, using small strips
of Tesa tape attaching it to 2 or 3 feathers. A small neo-
dinium boron magnet (5 x 2 mm, diameter x width) was
glued to the lower beak directly opposite the Hall
sensor. After attachment, the Hall sensor, which acts
as a transducer for magnetic field strength, was cali-
brated by using an aluminium rod of variable diameter,
graded in 2.5 mm steps (5 to 25 mm), placed between
the penguin mandibles. The exact time the beak was
open for each diameter was noted, as well as the dis-
tance between the calibration rod and the beak articu-
lation, so that beak angle (calculated using simple
trigonometry) could be equated with Hall sensor out-
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put (for details see Wilson et al. 2002b). The procedure
for fitting penguins with IMASEN-facilitated DDs took
ca. 14 min.

After being equipped, birds were replaced on the
nest, where they all continued brooding immediately.
They were left to undertake a single foraging trip (typ-
ically 24 to 36 h) before being recaptured and the
devices removed.

The DDs recorded data at 6 to 9 Hz in 13 or 16 chan-
nels (for the standard and IMASEN-enabled DDs,
respectively) with 22 bit resolution. Recording chan-
nels relevant for the present study were triaxial body
acceleration (range = -4 to 4 g) (Gémez Laich et al.
2008, Shepard et al. 2008a), pressure (0.5 to 20 bar),
speed (via a flexible silastic paddle, 0 to 6 m s !; Shep-
ard et al. 2008c) and Hall effect (Wilson et al. 2002b).
Accuracy on all channels was better than 1% of full-
scale deflection except for depth, where accuracy was
better than 0.01 %.

Data treatment. Data from the DDs were analyzed
using SNOOP software, which displays all recorded
channels as a function of time in the form of stacked
graphs. This programme allows the user to scroll
through the data and isolate and analyse single or mul-
tiple dives, exporting the analysed data in standard
spreadsheet format. Dives were examined visually to
identify those that consisted of smooth descents and
ascents, where no prey were captured and where pen-
guin power requirements were likely to be related
solely to the process of transit. These were separated
from dives where prey were captured, as indicated by
the IMASEN or by undulations in the dive profile
(Simeone & Wilson 2003), where the process of prey
pursuit was treated specifically. Data examined were
depth, rate of change of depth (vertical velocity), dive
and return-to-surface angle, swim speed and ODBA.
ODBA was calculated by isolating the static compo-
nent of the total acceleration in each acceleration axis
(surge, heave and sway) by smoothing the raw data
with a running mean over 2 s (Shepard et al. 2008b).
The dynamic component in each channel was then
derived by subtracting the static component from the
raw data and this was converted to its absolute value.
These absolute values were then summed from all 3
channels to provide the ODBA (for details see Wilson
et al. 2006). Data exported from SNOOP were further
analysed statistically in Origin Pro 8 (Origin Lab).

We converted ODBA values from Magellanic pen-
guins into power, assuming a linear relationship be-
tween ODBA and metabolic power (Wilson et al. 2006,
Fahlman et al. 2008, Halsey et al. 2008, Green et al.
2009), and by using data from Luna-Jorquera & Culik
(2000). These latter authors reported the relationship
between mass-specific metabolic power and swim
speed for congeneric Humboldt penguins Spheniscus

humboldti swimming underwater in a still-water swim
channel. We isolated 2 points from their polynomial
best-fit regression, one corresponding to resting meta-
bolic rate in water with a value of 23.8 W bird™! (assum-
ing that Magellanic penguins weigh 4 kg; Williams
1995) and another corresponding to a swim speed of
1.7 m s! (the mean swimming speed of Magellanic
penguins; Wilson et al. 2004), which corresponded to a
power of 59.3 W. Given that the penguins used in
Luna-Jorquera & Culik (2000) were obliged to swim
at a depth of about 0.5 m due to the restrictions of
the swim channel, and that depth modulates energy
expenditure (Lovvorn 1999), we then searched for
periods in our data when free-living Magellanic pen-
guins were swimming horizontally at 1.7 m s™! and
0.5 m depth and calculated the relevant ODBA values.
ODBA values for resting Magellanic penguins were
taken during resting periods of the birds on land since
the wave action on birds at sea introduces a dynamic
acceleration component that is independent of muscu-
lar activity. The values for resting Magellanic penguin
ODBA and those for swimming underwater under the
defined conditions were then used in a simple regres-
sion of ODBA versus metabolic power.

The IMASEN-derived data showed clearly when birds
had ingested prey rather than simply snapped at it
because successful capture resulted in undulations in
the graph of beak angle over time over the latter part
of the ingestion event. Work with penguins in captivity
has shown that these undulations are due to the birds
moving the fish down the throat past the rictus in a
series of gulps where the beak is momentarily opened
(Wilson et al. 2002b, R. P. Wilson et al. unpubl. data). In
fact, free-living Magellanic penguins snap at and miss
prey less than 1% of the time.

Means are presented +SD unless otherwise specified.

RESULTS
Relationship between ODBA and metabolic power

Inspection of all data from all birds showed that
there were few occasions when Magellanic penguins
actually swam at 0.5 m depth (using limits between 0.4
and 0.6 m) horizontally. Indeed, most dives, even those
that were considered shallow, exceeded 1 m. However,
a total of 12 birds performed at least one dive that met
the requirements for calculating OBDA, i.e. swimming
horizontally at 1.7 m s! and 0.5 m depth. Regressing
their ODBA values (one per bird) against the power
values (P, W) cited for those conditions (r* = 0.98, p <
0.001; F= 1302, p < 0.001) gave a relationship of:

P=117.70DBA + 22.0 (1)
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Description of dive parameters
Descent phase

During the descent phase of the dive, birds showed
systematic changes in most measured parameters as a
function of both maximum depth reached and depth at
any one time during the descent. For instance, birds
terminating their dives at deeper depths descended
the water column faster (F= 16341, p < 0.001) (Fig. 1a).
This was modulated primarily by descent angle, which
was steeper in birds terminating dives at deeper
depths (F= 859, p <0.001) (Fig. 1b), while actual swim
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Fig. 1. Spheniscus magellanicus. (a) Rate of descent (b) dive
angle (c) swim speed and (d) overall dynamic body accelera-
tion (ODBA) as a function of depth for the descent phase of
Magellanic penguins for dives terminating at different depths
(the deepest point in any of the relationships shows the maxi-
mum depth range). Different symbols show means derived
from a number of penguins all terminating dives within 5 m
of the maximum indicated. Error bars are +SE

speed was essentially invariant of the maximum depth
reached during the dive and varied little over the
course of the descent (p > 0.1) (Fig. 1c). In tandem with
the maximum depth-linked variable descent rates,
ODBA also varied systematically with both maximum
depth reached during the dive (F= 1271, p<0.001) and
depth at any time during the descent, with values being
higher for deeper dives (F = 464, p < 0.001) (Fig. 1d).

Bottom phase

During the bottom phase of the dive there was no
relationship between rate of change of depth, swim
angle, swim speed and ODBA and maximum depth
(p > 0.1). The mean ODBA value was 0.196 + 0.077 g
(Fig. 2).

Ascent phase

Vertical velocity. Rates of ascent (rates of change of
depth) varied according to the maximum depth
reached during the dive and the instantaneous depth
at any one time during the ascent (Fig. 3a). Typically,
birds started the ascent slowly, at speeds of ca. 0.5 m
s”!, but then systematically speeded up for the rest
of the ascent except for the last 5 m, just below the
surface, where rates of change of depth dropped again
(Fig. 3a). These lower values at the onset and end of
the ascent were not due to running mean problems, as
was made clear by the high sampling rate (minimum of
6 Hz). Second-order polynomial fits of the vertical
velocity (Vyer, m s71) versus instantaneous depth (Zpg,
m) data followed:

Vyert = kl(Zinst)z + ky(Zinst) + k3 (2)

which gave r’-values always in excess of 0.76 for dives
grouped into 10 m maximum depth bins (p < 0.01).
Beyond this, the constants (k;, k, and k3) from these
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Fig. 2. Spheniscus magellanicus. Frequency distribution of
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Fig. 3. Spheniscus magellanicus. (a) Rate of ascent, (b) return-
to-surface surface angle, (c) swim speed and (d) overall
dynamic body acceleration (ODBA) as a function of depth for
Magellanic penguins ascending to the surface after executing
dives to different depths. Different symbols show means
derived from a number of penguins all terminating dives
within 5 m of the maximum indicated. Data are means + SE
per depth class. Associated curves are best-fit second-order
polynomials whose regression parameters are detailed in
Table 1

polynomial fits varied systematically with maximum
depth groupings (Table 1) so that the vertical velocity
of surfacing Magellanic penguins could be described
in terms of the maximum depth reached (z,.y, m) by:

Vyert = {_[_0'00191n(zmax) + 0'0079]}Zin5t2

3
+ (£0.0007 2y, + 0.0513)Z4g; + 0.0087 20y + 0.69 ©)

Ascent angle. Rates of ascent were modulated pri-
marily by ascent angle, which also varied according to
the maximum depth reached during the dive (F = 542,

Table 1. Constants of second-order polynomial fits (following

¥ = KiZing> + koZing + k3, where z, is the instantaneous depth)

to describe how the y-parameters (vertical velocity, ascent an-

gle, swim speed and overall dynamic body acceleration

[ODBA]) change with instantaneous depth and maximum
depth (zyay, m) reached during a dive

y-parameter Value of constant r?
Vertical velocity  k; = —[-0.0019In(zy,4x) + 0.0079] 0.88
(ms™) ky =-0.00072z,4x + 0.0513 0.63
k3 = 0.0087 2,45 + 0.6969 0.75
Ascent angle (°)  k; =-[-0.0791In(zy,q) + 0.3296] 0.93
k, = 9.82587,,,, 5163 0.91
k3 = 0.1697 7,05 + 9.2648 0.51
Swim speed ki = 047122y, 07 0.92
(m s ky = —2.1303 7, -82%8 0.81
k3 =-0.0102z,,4 + 3.7774 0.17
ODBA (g) ky = —0.1037 70, 2058 0.99
ky = 0.0028In(z,,x) — 0.0116 0.97
k3 =-0.0004z7,,., + 0.121 0.22

p < 0.001), and the instantaneous depth at any time
during the ascent (F = 129, p < 0.001) (Fig. 3b). Typi-
cally, birds started the ascent at angles of ca. 15°
increasing angles to about 35°, though this value was
higher for deeper dives (Fig. 3b), at approximately the
mid-point of the return to the surface trajectory, before
the angle decreased again to around 20° just before
the birds surfaced (Fig. 3b). Second-order polynomial
equations (see Eq. 2) described the changing angles
over depth well (with r?-values always in excess of
0.88) and the 3 constants varied systematically with
maximum depth groupings in a similar manner to
vertical velocity (Table 1). Thus, ascent angle (Ac,_°)
could be described by:

Auee = (-[~0.079110(Zpnay) + 0.3296])Zipei2

4
+ (9.8258730 %1% 7., + 0.1697 7,0, + 9.26 D)

Swim speed

Swim speed varied little between dives to different
depths (p > 0.05), but showed systematic changes with
depth during the trajectory from the deepest part of
the dive to the surface, starting at values between 2
and 2.5 m s™! and tending to increase with decreasing
depth (up to values of almost 3.5 m s™! just before
reaching the surface) (F = 1848, p < 0.001) (Fig. 3c).
Second-order polynomial equations described the
changing speeds over depth well (with r?-values
always in excess of 0.77) and the 3 constants varying
systematically with maximum depth groupings (Table 1).
Thus swim speed (S, m s7!) could be described by:

S= (0-47122max_1'501)zin5t2 - (2'1303Zmax_0'8238)zinst

5
~0.0102z,,, + 3.78 ©®)
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ODBA

ODBA varied with maximum dive depth (F = 2457,
p < 0.001) and instantaneous depth (F = 3169, p <
0.001) (Fig. 3d) in a manner similar to the other para-
meters examined (Table 1) so that ODBA could be
described by:

ODBA = (~0.1037Zpay 2°%) Zns® + [0.00281n(Z)
—0.012]Zipgt — 0.0004 7y + 0.12 (6)

Prey capture

All penguins equipped with DDs showed undula-
tions in the depth profile (Fig. 4). Only 4 of those
equipped with IMASEN maintained the beak angle
sensors in place long enough to record prey capture,
3 of which did not stay in place for the full duration of
the foraging trip; but all showed that the undulations
were associated with prey capture (Fig. 4), as has been
already reported for this species by Simeone & Wilson
(2003). Consideration of 192 random prey capture
events by the single bird for which the complete forag-
ing trip was recorded (which constitutes half of all its
prey captures) showed that on 171 occasions (89 %) the
prey were taken on the upsurge, on 17 occasions (9 %)
during straight pursuit and on 4 occasions (2 %) on the
downsurge (32 = 121.6, p < 0.001). Detailed assessment
of 70 prey items taken by this bird (the cases where a
clear point of inflection indicated where the bird began
to react to the prey) showed that the upsurge preced-
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Fig. 4. Spheniscus magellanicus. Prey captures by a Magel-
lanic penguin, as indicated by increases in intermandibular
beak angle (upper) as a function of time into a dive (indicated
by depth; middle) and instantaneous power (lower) derived
from overall dynamic body acceleration (ODBA) (Eq. 1). Note
the decrease in depth and low power values immediately
preceding the ingestion events (2 examples are delineated by
the dashed boxes)

ing prey capture took a mean of 2.02 + 0.62 s at a mean
swim speed of 1.94 + 0.51 m s™!. Swim speed during
these manoeuvres was not related to depth at which
this occurred (depth taken to be the mid-point of the
upsurge; F=0.23, p > 0.05), but rate of change of depth
(or Vye) Was significantly related to this depth (12 =
0.22, F=21.63, p < 0.001) (Fig. 5a) according to:

Vyert = 0.014z + 0.7 (7)

This was primarily modulated by swim angle (Agwim: °),
which was positively related to depth (z) during the
upsurge (r> = 0.38, F=40.13, p < 0.001) (Fig. 5b) accord-
ing to:
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Fig. 5. Spheniscus magellanicus. Relationship between (a)

vertical speed, (b) swim angle and (c) calculated metabolic

power (see Eq. 1) and depth for upwardly directed rushes (up-

surges) terminating in prey capture in a Magellanic penguin
foraging on pelagic prey
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Agyim = 0.4z + 22.3 (8)

although the ODBA during the upsurge also increased
significantly, though marginally, with increasing depth
(F =6.72, p < 0.05). If ODBA is converted to power
using Eq. (1), mean power use (Ppean, W) during the
upsurge is calculated to be related to depth (Fig. 5c¢)
according to:

Prean = 0.54z + 87.6 9)

DISCUSSION

The treatise attempted here is based on the assump-
tion that ODBA relates linearly to metabolic rate, as
has been shown for 10 terrestrial animals (e.g. Halsey
et al. 2008, Green et al. 2009) and 1 swimming animal
(Fahlman et al. 2008).

Our work shows how energy expenditure during the
descent phase of the dive might be related to buoyancy
(via depth-linked changes in pressure affecting air
spaces) and performance expressed as rate of change
of depth (Fig. 1la), which is primarily modulated by
descent angle (Fig. 1b) as speed is virtually constant
(Fig. 1c). The descent rates that we recorded for Mag-
ellanic penguins during the present study concur with
those reported for this species by other authors (Peters
et al. 1998, Radl & Culik 1999, Walker & Boersma
2003), i.e. higher descent and ascent rates with
increasing maximum depth reached. Work on other
penguin species, where either measured speed allows
access to descent and/or ascent angles or where the
body angle can be measured directly via static acceler-
ation, indicates that rates of descent and ascent are
indeed modulated primarily by angle rather than
speed (Ropert-Coudert et al. 2001b, Sato et al. 2004). In
accordance with this, ODBA, and therefore metabolic
power, was higher in birds diving deeper in all phases
of the descent (Fig. 6). However, this is unlikely to be
just a function of the descent rate. Wilson & Zimmer
(2004) report that Magellanic penguins inhale more
respiratory air for deeper dives (cf. Sato et al. 2002) and
our birds showed no change in ODBA during the bot-
tom phase as a function of depth (cf. Fig. 2), which sug-
gests they followed this pattern. Thus it would appear
that the higher metabolic power in deeper-diving pen-
guins (Fig. 6) is also the result of them taking a higher
volume of inspired air faster down the water column.

The situation was more complex during ascent,
although, again, swim speed at any depth varied little
between dives stemming from different maximum
depths (Fig. 3b). We note that ascent speeds were
markedly higher than descent speeds, particularly
near the surface (cf. Figs. 1c & 3c). During the ascent,
rates of change of depth were higher at any given
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Fig. 6. Spheniscus magellanicus. Estimated metabolic power
used by Magellanic penguins during descent and ascent in
dives reaching different maximum depths (indicated by the
point at which the lines terminate). Values are calculated us-
ing the overall dynamic body acceleration (ODBA) values
taken from the study birds shown in Figs. 1d & 3d for descent
(black symbols) and ascent (grey symbols), respectively, and
transformed by P = 117.70DBA + 22.0 (Eq. 1). The horizontal
dashed line shows the estimated metabolic power for birds
swimming horizontally at any depth and was estimated by
transforming the mean ODBA for horizontal swimming of

0.196 g using Eq. (1)

depth in deeper-diving birds, this being primarily
modulated by the return-to-surface angle. Sato et al.
(2002) and Wilson & Zimmer (2004) (cf. Watanuki et al.
2006) report cessation of flipper beating during the
ascent phase of dives at a specific point where the
buoyancy of the expanding air associated with the
body is enough to propel the bird to the surface pas-
sively. The ODBA converted to metabolic power val-
ues from the present study (using Eq. 1) illustrated this
process (Fig. 6), where the rate of energy expenditure
was markedly less than at any time during the descent.
Again, it is notable that the metabolic power for the
ascent at any given depth was less for deeper-diving
individuals, presumably because they were being pro-
pelled with more force by the larger amounts of
inhaled air acting on a body being directed up at a
steeper angle (Fig. 3b).

Overall costs of dives to different depths

The data accumulated on how dive parameters vary
with different maximum depths (Figs. 1 & 3) allowed us
to model cumulative energetic costs for the various
phases of dives to different depths. This approach
shows that the during any single V-shaped dive (with
no bottom phase), the cumulative energy costs initially
increase rapidly as the bird descends but, after the
penguin has reached the point of maximum depth, the
rate of increase of energy expended decreases as the
bird returns to the surface (Fig. 7a). The total energy
expended for such dives shows a roughly log curve
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Fig. 7. Spheniscus magellanicus. (a) Cumulative energy ex-
pended as a function of time into the dive by a Magellanic
penguin executing 2 bounce dives (with no bottom phase) to 2
different maximum depths (20 and 60 m, shown by the points
of inflection) to highlight how power use varies according to
maximum depth of dive; deeper-diving birds use proportion-
ately more power (note the steeper gradient in the 60 m dive).
The data to construct these 2 dives were taken from results
obtained in the present study, assuming a linear relationship
between overall dynamic body acceleration (ODBA) and
metabolic power (Eq. 1). (b) Total energy expended (continu-
ous line, log-type curve) and vertical cost of transport (COT;
dashed line, linear fit) as a function of maximum dive depth
for Magellanic penguins executing bounce dives

relationship with maximum depth reached, so that the
cost of transport in the vertical dimension decreases
with increasing maximum depth (Fig. 7b). Thus, per
vertical metre travelled, deep dives are more energy-
efficient for Magellanic penguins than shallow dives.
This stems, in part, from more time spent at greater
depths where the power required to counteract
upthrust is minimized. The greater apparent efficiency
of deeper dives does not, however, necessarily mean
that Magellanic penguins should favour deeper dives,
even if prey were equally distributed down the water
column, since transit between the water surface and
the foraging depth are not directly profitable. The
profitability of different depths is further complicated
by the precise prey capture techniques adopted by

Magellanic penguins, which appear to use upthrust,
which varies with depth, to minimize energy expendi-
ture during pursuit.

Prey capture

Penguins of the genus Spheniscus feed on pelagic
school fish such as anchovy Engraulis spp., and sardine
Sardinops spp. in shoals (Williams 1995 and references
therein), and have been reported to catch prey either
by herding them or by simply chasing them down (Wil-
son et al. 1987 and references therein). Assuming the
simple pursuit scenario to be generally true, Wilson et
al. (2002a) modelled the consequences of power use in
rushes and found high metabolic costs because of the
way that drag increases as an accelerating function of
the speed. Unfortunately, the Wilson et al. (2002a) sce-
nario did not take into account the complicating and
profound effects of upthrust; Simeone & Wilson (2003)
reported from studies using IMASEN technology, that
86 % of prey caught by Magellanic penguins were pre-
ceded by rushes toward the surface similar to those
reported in the present study. This also accords with
results published by Wilson & Duffy (1986) who, after
examining bite marks on prey, reported that con-
generic African penguins Spheniscus demersus feed-
ing on cape anchovies Engraulis capensis always bit
them from the underneath. In fact, capture of prey dur-
ing surface-directed rushes may be a general feature
of penguin foraging ecology because other authors
have reported undulations in the depth profile to be
indicative of prey capture in emperor Aptenodytes
forsteri (Rodary et al. 2000), Humboldt (Luna-Jorquera
& Culik 1999), rockhopper Eudyptes chroscome (Trem-
blay & Cherel 2000) and Adélie penguins Pygosccelis
adeliae (Ropert-Coudert et al. 2001).

Although Ropert-Coudert et al. (2006) report that
little penguins Eudyptula minor head predominantly
downward during periods assumed to constitute prey
pursuit, possibly to use the seabed to assist them to
trap prey, this behaviour seems exceptional among
penguins. For example, Bost et al. (2007) noted that
king Aptenodytes patagonicus and Adélie penguins
catch prey during the ascent phases of undulations and
Ropert-Coudert et al. (2001a) report that the general
tendency of Adélie penguins to take prey from below
can be explained by the birds benefiting from the
backlighting of the water surface, against which the
prey are presumed to be silhouetted. This seems rea-
son enough to take prey from underneath. However,
the present study also showed that by angling their
body appropriately toward the surface, Magellanic
penguins can use upthrust to drive them toward their
prey at speeds appropriate for their capture. This pro-
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cess is most effective near the surface where upthrust
is greatest and the rush trajectory of a bird at, say,
10 m, is about 4 m long at an angle of around 25°. Birds
would appear to compensate for the decreased up-
thrust with increasing depth by increasing their angle
of attack (at 50 m, the ascent angle is predicted to be
ca. 42°), although they also invest more energy in the
rush (Fig. 5¢). Thus prey caught during upsurges may
be caught with the least energy, and therefore oxygen,
near the surface. The very few cases where prey are
pursued in a downrush will, however, be correspond-
ingly energetically more onerous near the surface.
More IMASEN data will allow us to assess whether the
incidence of prey pursuit is higher in downrushes with
increasing depth. Otherwise, proper calculations on
the energetic advantages of using buoyancy to pursue
prey should take into account the multiple prey cap-
tures of penguins during single dives (Magellanic pen-
guins may take up to 13 prey items in a single dive,
Wilson 2003), where the energy gained by rising pas-
sively to the surface has to be integrated with the
energy used to re-descend to a suitable depth to
undertake the manoeuvre again (cf. Fig. 4). Critically
though, penguins should be able to modulate the rate
of descent so that the vertical cost of transport is mini-
mized to produce an optimum solution, although,
given that these birds feed on pelagic fish in schools
(Williams 1995), this might depend on the strategy
of the prey. Complicated herding and cooperative
manoeuvres have been described for Spheniscus pen-
guins feeding on fish (see Wilson et al. 1987), and
description of the interaction between birds and prey,
particularly now that we might be able to quantify both
energetics more closely with ODBA and movement
using dead-reckoning (Wilson et al. 2008), promises to
be an exciting avenue for future research.
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