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A B S T R A C T   

Although the ingestion of plastics and other anthropogenic debris by seabirds is a global problem, few studies 
have employed standardized protocols to quantify and classify the debris ingested by seabirds in the Southwest 
Atlantic. We evaluated the ingestion of marine debris (items >0.1 mm) by 126 coastal and pelagic birds (19 
species) along the coast of Espírito Santo, Eastern Brazil. Debris were found in 30% of birds examined (11 
species). Particles <1 mm accounted for 35% of all debris items. Most ingested debris were plastics (97%). 
Ingestion of >0.1 g of plastic debris was recorded in five species: Atlantic yellow-nosed albatrosses (Thalassarche 
chlororhynchos), Cory’s shearwaters (Calonectris borealis), Manx shearwaters (Puffinus puffinus), brown boobies 
(Sula leucogaster), and Magellanic penguins (Spheniscus magellanicus). Our findings suggest that the ingestion of 
marine debris, especially plastics, is a common problem for coastal and pelagic birds in tropical Southwest 
Atlantic waters.   

1. Introduction 

Plastic pollution is one of the greatest challenges for marine con-
servation in the 21st century (Wilcox et al., 2015). Modeling studies 
validated by global sampling efforts demonstrate that debris are 
concentrated in subtropical convergence zones (commonly known as 
“garbage patches”) and along the coastal margins near human popula-
tion centers (Lebreton et al., 2018; Wilcox et al., 2015). Large items 
(>50 cm) are the greatest contributors in terms of mass to these accu-
mulation zones, especially fishing gear remnants (Lebreton et al., 2018). 
Outside of these accumulation zones, however, the majority of plastic 
debris floating in the ocean corresponds to smaller items, especially 
between 1 and 5 mm (Cózar et al., 2014; Suaria et al., 2020; Uchida 
et al., 2016). 

Although the ingestion of plastics by marine animals was recorded as 
early as the 1960s, the last two decades have seen a rapid increase in 
studies reporting the interaction between wildlife and plastics, with 

plastic ingestion having been recorded in 180 of 226 seabird species 
studied (Kühn et al., 2015; Kühn and Van Franeker, 2020; Provencher 
et al., 2017). When adjusting for biases in study effort with regards to 
time and species, the actual rate of plastic ingestion by seabirds could be 
as high as 90% of individuals (Wilcox et al., 2015). The health effects of 
the ingestion of plastics and other debris are relatively self-evident when 
they cause the obstruction or perforation of the gastrointestinal tract 
(Phillips et al., 2010; Ryan, 2016; Senko et al., 2020). However, sub- 
lethal effects of debris ingestion, especially nano (<0.001 mm) and 
microplastics (0.001 to 5 mm), are poorly documented and consequently 
the true extent of their health impacts is likely underestimated (Puskic 
et al., 2020). For example, ingested plastics are known to release plastic 
additives (e.g. plasticizers, flame retardants) and organic pollutants (e.g. 
PCBs, PAHs, organochlorine pesticides) when ingested by marine fauna 
(Baini et al., 2017; Hardesty et al., 2015; Puskic et al., 2020; Rios et al., 
2010; Tanaka et al., 2013). Other sub-lethal effects of debris ingestion 
are dietary dilution, malnutrition, delayed chick growth, and changes in 
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blood chemistries (Auman et al., 2004; Lavers et al., 2019, 2014; Ryan, 
2016; Senko et al., 2020). 

Previous studies have found that the prevalence and magnitude of 
plastic ingestion can vary considerably among avian taxa according to 
their diet and foraging techniques (Kühn and Van Franeker, 2020; Moser 
and Lee, 1992; Roman et al., 2019; Ryan, 1987). Thus, it is important to 
consider local differences in species composition of avian communities 
when assessing the impacts of plastic ingestion in seabirds. Although 
there is an abundance of studies on the ingestion of plastics by seabirds 
in the northern hemisphere (Avery-Gomm et al., 2013; Baak et al., 2020; 
Moser and Lee, 1992; Provencher et al., 2014), modeling studies suggest 
that plastic ingestion might be most impactful to seabirds in the southern 
hemisphere due to the avian community composition in that region 
(Wilcox et al., 2015), with a high richness of Procellariiformes species 
(Davies et al., 2010). Many procellariiform birds are highly susceptible 
to plastic ingestion, since they feed preferably on small prey on the 
waters’ surface, where plastics tend to float and accumulate (Titmus and 
Hyrenbach, 2011). 

Several studies have quantified debris ingestion in seabirds (beach- 
cast or killed by fisheries) in Brazil, especially in southernmost areas 
(Barbieri, 2009; Colabuono et al., 2009; Jiménez et al., 2015; Petry 
et al., 2009; Petry and Benemann, 2017; Tourinho et al., 2010). How-
ever, little is known about the prevalence and magnitude of plastic 
ingestion by coastal and pelagic birds in the Eastern Brazil ecoregion 
(Brandão et al., 2011; Pinto et al., 2007; Tavares et al., 2017). In this 
study, we employ standardized methods (Galgani et al., 2019; Kershaw 
et al., 2019) to characterize and quantify the ingestion of plastics and 
other debris by coastal and pelagic birds (19 species) along the coast of 
Espírito Santo, in tropical waters of Eastern Brazil. 

2. Methods 

The coastline of Espírito Santo state (Fig. 1A) extends approximately 
392 km from Riacho Doce stream (18.35S, 39.67 W) to Itabapoana River 
(21.31S, 40.96 W). This region is characterized by oligotrophic tropical- 
subtropical transitional waters of the Eastern Brazil ecoregion in the 
Tropical Southwestern Atlantic province (Schmid et al., 1995; Spalding 

et al., 2007). Wildlife rescued or found dead in this region is routinely 
brought to the Institute of Research and Rehabilitation of Marine Ani-
mals (IPRAM). These animals are either collected by the Projeto de 
Monitoramento de Praias das Bacias de Campos e Espírito Santo (PMP- 
BC/ES) during daily beach surveys or are submitted by the general 
public and local authorities on a voluntary basis. In this study, we 
evaluated coastal and pelagic birds admitted over a 26-month period (20 
April 2019 to 20 June 2021). Species were classified by size according to 
their average adult body mass (Dunning, 2007; Sick, 2001): small 
(<300 g), medium (300–1000 g), and large (>1000 g). Species were also 
classified according to their status in Brazil (resident or visitor) ac-
cording to the Brazilian Ornithological Records Committee, their global 
conservation status according to the International Union for the Con-
servation of Nature (IUCN), and their habitat and foraging techniques 
(Table 1; derived from BirdLife International and Handbook of the Birds 
of the World, 2019; Piacentini et al., 2015; Shealer, 2002; Sick, 2001). 

Animals were classified according to their condition of decomposi-
tion (adapted from Geraci and Lounsbury, 2005): code 1 (live animal), 
code 2 (carcass in good condition; fresh/edible), code 3 (carcass in fair 
condition; decomposed, but organs basically intact), code 4 (carcass in 
poor condition; advanced decomposition), and code 5 (mummified or 
skeletal remains). Live birds that died within five days of admission and 
carcasses codes 2 to 4 whose digestive tract was intact were evaluated 
for plastic ingestion. Carcasses were necropsied following standard 
protocols (Work, 2000), and macroscopic pathological findings (e.g. 
perforations, ulcers, bleeding, etc.) were recorded along with additional 
relevant metadata (latitude and longitude of collection site, date of 
collection, species, age, sex and body mass). The upper digestive tract 
(proximal esophagus to pyloric sphincter) was removed intact and 
placed in a sealed plastic bag and stored at − 20 ◦C. 

Digestive tracts were later thawed, cut open, and their contents and 
mucosa were thoroughly washed with running tap water through a 0.1 
mm mesh sieve. Any material retained was transferred to Petri dishes 
and examined under a stereomicroscope (7.5 to 35× magnification), and 
debris were removed with forceps or a fine brush (with natural bristles, 
i.e. bovine hair). In this study, we employed a 0.1 mm mesh sieve, 
enabling the detection of microparticles (0.1–5 mm), mesoparticles 

Fig. 1. Regional landmarks and geographic distribution of coastal and pelagic birds collected along the coast of Espírito Santo, southeast Brazil, with or without 
debris in their upper digestive tract. Study region was divided as follows: “North” from the border with Bahia to marker 1 (Doce River mouth), “Center” from marker 
1 to marker 2 (Maembá), and “South” from marker 2 to the border with Rio de Janeiro. 
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(5–25 mm) and macroparticles (>25 mm) (classification adapted from 
Kershaw et al., 2019). However, studies on debris ingestion by seabirds 
often employ 1 mm mesh sieves (e.g. Baak et al., 2020; Codina-García 
et al., 2013; Van Franeker et al., 2011); to allow comparison with such 
studies, we further categorized microparticles as smaller (0.1–1 mm) or 
larger microparticles (1–5 mm). 

To prevent any cross-contamination with microparticles, several 
precautions were considered during laboratory procedures. All glass/ 
metal containers and instruments used were previously rinsed with tap 
water and detergent using a brush with natural bristles. All working 
surfaces were cleaned with ethanol and tissue paper. Air flow was 
interrupted by turning off air condition, fans and keeping the room 
closed. Samples of potential contaminant materials (tissue paper, brush 
bristles, lab coat, nitrile gloves, human hair, etc.) were examined under 
the stereomicroscope to determine their morphology so that items with 
similar characteristics could be recognized and excluded if they were 
found in the samples (although this did not occur). Before processing 
samples, we placed clean Petri dishes with a small quantity of tap water 
near the working benches (one near the tap where samples were washed 
and one next to the stereomicroscope), and at the end of the day these 
dishes were checked for contaminants (none were found). 

For particles larger particles (≥1 mm), visual inspection under the 
stereomicroscope is generally reliable to differentiate natural materials 
from anthropogenic debris (Van Franeker et al., 2011; Lusher et al., 
2015; Avery-Gomm et al., 2018, 2016; Gil-Delgado et al., 2017; Pro-
vencher et al., 2014, 2018). To avoid misidentification and underesti-
mation of smaller particles (<1 mm) it is necessary to standardize the 
plastic particle selection, following certain criteria to guarantee proper 
identification. For smaller particles to be classified as debris, they had to 
(1) be homogeneously colored, (2) be shiny and not matte, (3) have no 
cellular/organic structures visible, (4) be equally thick throughout their 
length, and (5) have three-dimensional bending (Hidalgo-Ruz et al., 
2012; Lusher et al., 2020). In most cases, the smaller debris items had 
physical properties (density, texture, color) identical to those of larger 
items in the same sample, corroborating that they were fragments that 
broke down from larger, more identifiable debris. 

Debris items were classified as recommended by the United Nations’ 
Joint Group of Experts on the Scientific Aspects of Marine Environ-
mental Protection (Kershaw et al., 2019), with some adaptations as 
employed by the European Marine Observation and Data Network 

(Galgani et al., 2019). Accordingly, each debris item was classified by 
type: fragment/pellet (hard particles with trapezoidal, spherical, cylin-
drical, smooth or granular shape), filament (long fibrous material with a 
length substantially greater than its width), film (flat, flexible particle 
with smooth surface), foam (polystyrene and/or polyurethane), and 
other/unclassified (metal, glass, paper, rubber or any other non-plastic 
anthropogenic debris). Fragments and pellets, which are usually classi-
fied separately, had to be pooled because they could not be reliably 
distinguished. Non-filamentous debris items were classified by shape 
(angular, sub-angular, sub-rounded, rounded, cylindrical, ovoid, flat, 
and other/unclassified). Filamentous debris items were classified by 
subtype (monofilament, ribbon, and braided thread). Additionally, 
debris were classified by color and grouped into eight categories (black/ 
grey, brown/tan, blue/green, yellow, orange/pink/red, white/cream, 
colorless, multicolor, and metallic). A “kind” was defined as a collection 
of debris items with similar characteristics (density, texture and color), i. 
e. possibly fragments of the same item that broke down due to digestion 
or handling. The total mass of debris for each individual was measured 
with a scale (precision ±0.01 g); when the total mass was lower than 
0.01 g, total mass was inferred as 0.01 divided by the square root of 2 for 
calculations of mean and standard deviation (Tekindal et al., 2017). 
Debris items were individually photographed with an 18 MP digital 
camera coupled to the stereomicroscope, and software-assisted image 
analysis with ImageJ (Schneider et al., 2012) was used to measure the 
length (widest dimension) of each item. Each debris item was classified 
into four categories (0.1–1 mm, 1–5 mm, 5–25 mm, >25 mm) according 
to its maximum length. The length of the largest debris item was also 
recorded for each individual bird. All processing, classification and 
measurement of debris were conducted by the same individual (R.E.T. 
V.) to avoid inter-observer differences. 

Prevalence (no. individuals with debris/no. individuals evaluated), 
mean abudance (no. debris items/no. individuals evaluated) and mean 
intensity (no. debris items/no. individuals with debris) were calculated. 
The proportion of individuals with total mass of debris greater than 0.1 g 
was calculated for each species (OSPAR, 2010). Supplemental Files S1 
and S2 provide the complete dataset for this study. 

The geographic coordinates of the beach collection site were recor-
ded for each bird, and the collection site was classified into three regions 
(North, Center, South; see Fig. 1A). The Chi-square test was used to 
compare the presence of debris in birds collected in each region. Nearby 

Table 1 
Biological characteristics and conservation status of the studied species.  

Species English name Code Body size Foraging habitata Foraging techniqueb Status in Brazil IUCNc 

Haematopus palliatus American oystercatcher AMOY Medium C P Resident – 
Anous stolidus Brown noddy BRNO Small P PL,D,KP Resident – 
Larus dominicanus Kelp gull KEGU Medium C P,KP,SC,D,SS Resident – 
Sterna hirundinacea South American tern SATE Small C PL,D,KP Resident – 
Sterna hirundo Common tern COTE Small C PL,D,KP Resident – 
Thalasseus acuflavidus Cabot’s tern CATE Small C PL,D,KP Resident – 
Arenaria interpres Ruddy turnstone RUTU Small C P,SC Visitor – 
Ardea alba Great egret GREG Medium F,C P Resident – 
Nycticorax nycticorax Black-crowned night heron BCNH Medium F,C P Resident – 
Phaethon aethereus Red-billed tropicbird BCTR Medium P PL Resident – 
Tachybaptus dominicus Least grebe LEGR Small F,C PD Resident – 
Thalassarche chlororhynchos Atlantic yellow-nosed albatross AYNA Large P SS,KP,SC Visitor EN 
Calonectris borealis Cory’s shearwater COSH Medium P PD,SS,D Visitor – 
Procellaria aequinoctialis White-chinned petrel WCPE Medium P PD,SS,D Visitor VU 
Puffinus puffinus Manx shearwater MASH Medium P PD,SS,D Visitor – 
Spheniscus magellanicus Magellanic penguin MAPE Large C,P PD Visitor NT 
Fregata magnificens Magnificent frigatebird MAFR Large C,P D,KP Resident – 
Nannopterum brasilianus Neotropic cormorant NECO Medium F,C PD Resident – 
Sula leucogaster Brown booby BRBO Large C,P PL,PD Resident –  

a Foraging habitat: F = Freshwater, C = Coastal/estuarine, P = Pelagic. 
b Foraging techniques: P = Pecking and peck-digging, D = Dipping, SS = Surface-seizing, PL = Plunge-diving, PD = Pursuit-diving, KP = Kleptoparasitism, SC =

Scavenging. 
c Global conservation status according to the International Union for the Conservation of Nature (IUCN): EN = Endangered, VU = Vulnerable, NT = Near 

Threatened, “—” = Least Concern. 
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human settlements and population density were obtained from Global 
Population of the World v4 (GPWv4) (Doxsey-Whitfield et al., 2015); 
this 30-arc second resolution image was aggregated by a factor of 5, and 
then the human population at the point of beach collection site was 
interpolated for each bird. Kernel density heat maps (cell size = 0.001 
km2, search radius = 25,000 km2) were used to illustrate the spatial 
density of studied birds. A binomial generalized linear model (GLM) was 
used to determine which of the following variables were predictive of 
the presence of debris in the upper digestive tract of a bird: species size 
(small, medium, large), habitat (binary variables: freshwater, coastal, 
pelagic), foraging strategy (binary variables: pecking/peck-digging, 
dipping, surface-seizing, plunge-diving, pursuit-diving, kleptoparasi-
tism, scavenging), species status (resident, visitor), region (North, Cen-
ter, South), year (2019, 2020, 2021), age group (juvenile, adult, 
unknown), sex (male, female), carcass condition (dead within 5 days of 
admission, freshly dead beach carcass, beach carcass in moderate 
decomposition, beach carcass in advanced decomposition), human 
population at beach collection site. The stepwise procedure informed by 
Akaike’s Information Criterion (AIC) was used to select the best model. 

3. Results 

We evaluated the upper digestive tract of 126 individuals repre-
senting 19 species. Of these, 38 individuals (30% of individuals) rep-
resenting 11 species (58% of species) had ingested debris (Table 2). If 
only debris items larger than 1 mm were considered, these numbers 
would change to 34 individuals (27%) and 10 species (53%) with debris. 
Fig. 1B and C compare the geographic distribution of birds with and 
without debris in their upper digestive tract. None of the birds collected 
in the North region had ingested debris (n = 11), compared to 33% in 
each the Center (n = 88) and South regions (n = 27); however, this 
apparent difference was not statistically significant (χ2 = 5.206, df = 2, 
P = 0.074). Fig. 2 presents the temporal distribution of birds found with 
ingested debris during the study period. 

Table 3 provides a detailed summary of the distribution and char-
acteristics of debris item for each bird species. A total of 212 debris items 
were recovered, with a mean abundance of 1.6 ± 7.1 items per bird 
evaluated (Q1 = 0; median = 0; Q3 = 1) and an intensity of 5.3 ± 12.5 
items per bird with debris (Q1 = 2; median = 2; Q3 = 4; maximum = 79). 
Debris items were distributed by size category as follows: 0.1–1 mm (75 
items, 35%), 1–5 mm (63 items, 30%), 5–25 mm (46 items, 22%), and 

>25mm (28 items, 13%). When debris smaller than 1 mm are omitted 
from the analysis (for comparison with studies using a 1 mm mesh 
sieve), debris prevalence is 27%, average abundance is 1.0 ± 2.7 items 
per bird evaluated and average intensity is 3.6 ± 4.2 items per bird with 
debris. 

Polystyrene foam was the most frequent item type (81 items, 38%); 
however, this was due to 79 polystyrene foam items recovered from a 
single bird (an Atlantic-yellow nosed albatross Thalassarche chloro-
rhynchos). When this outlier is removed, the most frequent item types 
were: filaments (66 items, 50%), fragments/pellets (34 items, 26%), and 
films (24 items, 18%), followed by natural fibers/rubber (4 items, 3%), 
non-plastic items (3 items, 2%), and polystyrene foam (2 items, 1.5%). 
The natural fibers/rubber category comprised two fragments of white 
sulfite pulp paper (both from an Atlantic yellow-nosed albatross) and 
two fragments of onion skin (both from another Atlantic yellow-nosed 
albatross). The non-plastic items category comprised a fishing hook 
(from a brown booby Sula leucogaster) and two fragments of aluminum 
foil (each from a common tern Sterna hirundo and a white-chinned petrel 
Procellaria aequinoctialis). 

White/cream was the most frequent item color (113 items, 53%); 
however, this was also largely driven by the 79 white polystyrene foam 
items from a single bird. When this outlier is removed, the most frequent 
item colors were: black/grey (45 items, 34%), white/cream (34 items, 
26%), and blue/green (28 items, 21%), followed by colorless (13 items, 
10%), brown/tan (9 items, 7%), metallic (3 items, 2%), and yellow (1 
item, 0.7%). Similarly, a rounded shape was most frequent (79 items, 
41%) among non-filamentous items (n = 146), but this was driven by 79 
polystyrene foam items recovered from a single bird. Removing this 
outlier, the non-filamentous items were most frequently flat (60 items, 
90%), whereas other shape categories were rare: cylindrical (2 items, 
3%), other/unclassified (2 items, 3%), sub-angular, sub-rounded, and 
ovoid (1 item each, 1.5% each). 

Filamentous items (n = 66) were predominantly monofilaments (32 
items, 48%) and ribbons (31 items, 47%), with a minority of braided 
threads (3 items, 5%). At least 19 monofilament items (29% of fila-
ments) had thickness and/or knot pattern consistent with that of fishing 
nets. Four items had inscriptions, of which two were numbers and one 
was a single letter. The only item with sufficient text to be recognizable 
showed “CE DE AM” and “EDIENTES”, which likely corresponds to 
“doce de amendoim” (in Portuguese: peanut sweet) or “doce de 
amêndoas” (almond sweet) and “ingredientes” (ingredients); it is thus 

Table 2 
Sample size and frequency of occurrence (FO%) of marine debris found in the upper digestive tract of seabirds collected on the coast of Espírito Santo state, southeast 
Brazil, 2019–2021.  

Speciesa Samples evaluated Debris items 
>0.1 mm, FO% 

Debris items 
>1 mm, FO% 

Debris items by size category, FO% Debris items by size category, n 

0.1–1 mm 1–5 mm 5–25 mm >25 mm 0.1–1 mm 1–5 mm 5–25 mm >25 mm 

AMOY 2 50% 50% – – 50% 50% – – 2 4 
BRNO 5 – – – – – – – – – – 
KEGU 2 50% – 50% – – – 1 – – – 
SATE 3 – – – – – – – – – – 
COTE 9 22% 22% – 22% – – – 3 – – 
CATE 27 15% 11% 4% 4% 4% 4% 1 1 2 2 
RUTU 1 – – – – – – – – – – 
GREG 4 50% 50% – 50% 25% 50% – 6 1 4 
BCNH 2 – – – – – – – – – – 
BCTR 1 – – – – – – – – – – 
LEGR 1 – – – – – – – – – – 
AYNA 5 60% 60% 40% 20% 40% 20% 63 17 3 2 
COSH 5 80% 80% – 20% 80% 20% – 2 7 1 
WCPE 4 75% 50% 25% 25% 50% 50% 1 1 4 2 
MASH 20 35% 35% 5% 20% 20% 5% 2 14 12 1 
MAPE 16 50% 50% 13% 19% 44% 38% 2 15 14 9 
MAFR 4 – – – – – – – – – – 
NECO 2 – – – – – – – – – – 
BRBO 13 23% 15% 15% 15% 8% 8% 5 2 1 2 
Total 126 30% 27% 8% 13% 18% 13% 75 61 46 27  

a Species codes are the same as provided in Table 1. 
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presumed to be a fragment of food packaging. Other items with identi-
fiable origin comprised: three fragments of black rubbish bags, two 
fragments of shoelaces, and two fragments of a bottle tamper-evident 
band. The only bird that had necropsy lesions consistent with having 
died from debris ingestion was an adult male brown booby that was 
emaciated and had a heavily eroded fishing hook lodged in a firm mass 
of necrotic-purulent material adhered to the ventricle wall, which pre-
sumably triggered chronic pain and discomfort that ultimately caused 
the bird to starve. 

GLM identified three variables (species size, species status and sex) 
were significantly predictive of debris ingestion (McFadden’s pseudo-R2 

= 0.127; intercept = 2.693 ± 0.581, P < 0.001). Birds were more likely 
to ingest debris if they were a medium-sized species (coefficient = 1.448 
± 0.603, P = 0.016) relative to small-sized species (reference category). 
A similar but not statistically significant effect was seen for large-sized 
species (coefficient = 1.094 ± 0.594, P = 0.065). Birds of migratory 
species were more likely to ingest debris (coefficient estimate = 1.026 ±
0.459, P = 0.025) than resident species (reference category). Although 
the effect was not statistically significant, males were slightly more 
likely to ingest debris (coefficient estimate = 0.788 ± 0.454, P = 0.083) 
than females (reference category). The remaining variables (habitat, 
foraging technique, region, year, age group, carcass condition, human 
population) were poor predictors of plastic ingestion (all P > 0.1) and 
therefore were not included in the final model. 

4. Discussion 

Every year, eight million metric tons of plastics enter our ocean, 
adding to the estimated 150 million metric tons accumulated and 
circulating in our marine environments (Jambeck et al., 2015). Given 
the magnitude of this problem, it is urgent to understand the impacts of 
these plastics on marine wildlife and ocean health. 

Studies on marine plastic pollution traditionally differentiate be-
tween nanoplastics (<0.001 mm), microplastics (0.001 to 5 mm), 
mesoplastics (5 to 25 mm), macroplastics (25 to 1000 mm), and 
megaplastics (>1000 mm) (Gibb et al., 2017; Kershaw et al., 2019). 
Studies on plastic ingestion by seabirds often employ 1 mm mesh sieves 
(Baak et al., 2020; Codina-García et al., 2013; Van Franeker et al., 2011) 
or do not provide details on the lower size threshold, presumably relying 
on naked eye visualization of debris during dissection (Colabuono et al., 
2009; Jiménez et al., 2015; Tavares et al., 2017). In this study, we 
employed a 0.1 mm mesh sieve and thoroughly examined all retained 
material under a stereomicroscope, which allowed for the detection of 
items smaller than 1 mm that could otherwise have been missed. For this 
reason, caution is warranted when comparing our results to those of 
previous studies. When only fragments larger than 1 mm are considered, 

the prevalence of debris ingestion in this study remains approximately 
the same (27% down from 30%) but intensity decreases substantially 
(3.6 items per bird with debris, down from 5.3). Because all items 
smaller than 1 mm were below the 0.01 g weighing threshold, estimated 
debris mass remains unchanged. These results suggest that the evalua-
tion of debris items larger than 1 mm, which is less laborious and time 
consuming (and less likely to misclassify natural vs. anthropogenic 
items), may produce reasonably accurate estimates for the prevalence 
and mass of debris ingested by seabirds, but is likely to substantially 
underestimate the number of debris items per bird (therefore inaccu-
rately estimating debris abundance and intensity). 

The high prevalence of debris ingestion in albatrosses, shearwaters, 
brown boobies and Magellanic penguins (Spheniscus magellanicus) is 
consistent with previous studies on the Atlantic coast of South America 
(Brandão et al., 2011; Colabuono et al., 2009; Copello and Quintana, 
2003; Jiménez et al., 2015; Petry et al., 2009; Petry and Benemann, 
2017; Pinto et al., 2007; Tavares et al., 2017; Tourinho et al., 2010). In 
the case of albatrosses, petrels and some shearwaters, their high sus-
ceptibility may be largely related to them feeding on small prey that they 
seize on the ocean’s surface, where plastics tend to float and accumulate 
(Roman et al., 2019; Titmus and Hyrenbach, 2011). Additionally, recent 
studies have shown that the biofilm that forms on the surface of plastic 
debris produces an olfactory signature that resembles that of the natural 
food of procellariform birds, which may also explain the high frequency 
of debris ingestion in this group (Savoca et al., 2017, 2016). 

However, Manx shearwaters (Puffinus puffinus) feed primarily on 
school-fish that they chase while diving (Brown et al., 1978; Shoji et al., 
2016), hence their predisposition to plastics ingestion is harder to 
explain. Likewise, Magellanic penguins also employ a pursuit-diving 
foraging technique (Gómez-Laich et al., 2018; Peters et al., 1998; Sala 
et al., 2014). However, because the high prevalence of debris ingestion 
in Magellanic penguins is biased towards juveniles during winter 
migration, higher exposure may result from a poorly selective diet in an 
attempt to stave-off hunger as they acquire fishing skills (Brandão et al., 
2011; Tourinho et al., 2010). In fact, juvenile Magellanic penguins 
consume a more diverse diet and with a greater proportion of items with 
low caloric density (especially cephalopods) during wintering in Bra-
zilian waters than do adults at the breeding grounds (Di Beneditto et al., 
2015; Fonseca et al., 2001; Pinto et al., 2007). It is plausible that Manx 
shearwaters also ingest plastics while overwintering in Brazil, where 
they too have a more diverse diet and higher proportion of low calorie 
items (especially cephalopods and insects) (Petry et al., 2008). The body 
mass of the Manx shearwaters evaluated in this study (mean ± SD = 269 
± 59 g, range = 204–430 g; see Supplemental File S1) was generally 
lower than that of healthy individuals (350–575 g) (Lee et al., 2020), 
which further supports the hypothesis that debris ingestion in this 

Fig. 2. Temporal distribution of coastal and pelagic birds collected along the coast of Espírito Santo, southeast Brazil, with or without debris in their upper 
digestive tract. 
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species was associated with poor nutritional status. Further studies are 
therefore warranted to assess potential associations between the plastic 
ingestion by seabirds and dietary shifts related to factors such as age/ 
experience and prey availability. 

The only previous study on the ingestion of plastic debris by seabirds 
in the study region used publicly-available data for 2010-2013 from the 
same beach monitoring program as this study (PMP-BC/ES) (Tavares 
et al., 2017). In that study, which included data from northern Rio de 
Janeiro, debris ingestion was recorded in 16% of individuals (n = 622) 
and 55% of species examined (n = 22). Procellariiformes experienced 
the highest frequency of debris ingestion in that study: 57% of black- 
browed albatrosses (Thalassarche melanophris, n = 7), 56% of great 

shearwaters (Ardenna gravis, n = 16), 50% of white-chinned petrels (n =
10), 33% of Atlantic yellow-nosed albatrosses (n = 6), 24% of Cory’s 
shearwaters (n = 38), and 13% of Manx shearwaters (n = 32). Debris 
ingestion was also relatively frequent in some non-procellariiform birds: 
18% of brown boobies (n = 44), 15% of Magellanic penguins (n = 365) 
and 4.5% of common terns (n = 22). Our results show a similar pattern 
in the susceptibility of these different species, but the prevalence of 
plastic ingestion in this study was nearly double (see Table 2). This 
difference could be reflective of a worsening of environmental condi-
tions, considering that the population of Espírito Santo has increased by 
c. 40% from 2010 to 2020 (IBGE, 2020), combined with the global in-
crease of anthropogenic marine debris (Lebreton et al., 2019). However, 

Table 3 
Measurements and visual characteristics of marine debris found in the upper digestive tract of seabirds collected on the coast of Espírito Santo state, southeast Brazil, 
2019–2021.   

AMOYa KEGUa COTEa CATEa GREGa AYNAa COSHa WCPEa MASHa MAPEa BRBOa Total 

Prevalence 
Samples evaluated 2 2 9 27 4 5 5 4 20 16 13 107 
Samples with debris 1 1 2 4 2 3 4 3 7 8 3 38 
Debris FO% 50% 50% 22% 15% 50% 60% 80% 75% 35% 50% 23% 36% 
Birds with >0.1 g plastics 0% 0% 0% 0% 0% 40% 20% 0% 15% 13% 15% 9%  

Items per bird (intensity), n 
Mean 6 1 1.5 1.5 5.5 28.3 2.5 2.7 4.1 5 3.3 5.5 
SD – – 0.7 0.6 3.5 43.9 1 1.2 3.7 6.6 2.1 12.8 
Minimum – – 1 1 3 2 2 2 1 1 1 1 
Maximum – – 2 2 8 79 4 4 11 21 5 79  

Item kinds per bird, n 
Mean 1 1 1.5 1 3 1.3 2.3 2 2.3 2.3 1.7 1.9 
SD – – 0.7 0 0 0.6 0.5 0 1.6 1.4 1.2 1.1 
Minimum – – 1 1 3 1 2 2 1 1 1 1 
Maximum – – 2 1 3 2 3 2 5 5 3 5  

Total debris mass, g 
Mean <0.01 <0.01 <0.01 0.01 <0.01 44.13 0.13 0.03 0.21 1.38 2.68 4.04 
SD – – <0.01 0.02 <0.01 72.25 0.23 0.05 0.45 3.79 3.2 20.68 
Minimum – – <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 
Maximum – – <0.01 0.04 <0.01 127.51 0.46 0.08 1.23 10.77 6.22 127.51  

Largest debris length, mm 
Mean 108 0.85 1.81 26.41 38.3 22.04 15.47 24.71 11.04 45.48 18.78 26.17 
SD – – 0.22 40.29 3.25 28.13 12.6 20.64 9.52 31.17 21.29 28.53 
Minimum – – 1.65 0.72 36 3.12 5.86 1.32 1.47 8.78 3.04 0.72 
Maximum – – 1.96 85.7 40.59 54.37 33.25 40.4 29.38 83.4 43 108  

Debris type, FO% 
Fragment/pellet – 50% 11% 7% 50% 20% 60% 25% 20% 13% 8% 17% 
Filament 50% – – 4% 50% – 40% 50% 15% 25% 15% 16% 
Film – – 11% 4% 25% – 40% 25% 5% 31% 8% 12% 
Foam – – – – – 20% – – 5% – – 2% 
Non-plastic – – 11% – – – – 25% – – 8% 3% 
Natural fiber/rubber – – – – – 40% – – – – – 2%  

Debris shape, FO% 
Sub-angular – – – – – – 20% – – – – 1% 
Sub-rounded – – – – – – – – 5% – – 1% 
Rounded – – – – – 20% – – – – – 1% 
Cylindrical – – – – – – 40% – – – – 2% 
Ovoid – – – – – – 20% – – – – 1% 
Flat – 50% 22% 11% 50% 40% 80% 50% 25% 44% 15% 28% 
Other/unclassified – – – – – 20% – – – – 8% 2%  

Filament subtype, FO% 
Monofilament – – – 4% 25% – 40% 50% 15% 19% – 11% 
Ribbon 50% – – – 25% – – – – 19% 8% 6% 
Braided thread – – – – – – – – – 6% 8% 2%  

Debris color, FO% 
Black/grey – – – 4% 50% – 40% – 20% 25% 8% 13% 
Brown/tan – – – – – 20% 20% 25% 5% 25% – 7% 
Blue/green – – 11% – 50% 20% 60% 50% 5% – 15% 11% 
Yellow – – – – – – – – 5% – – 1% 
White/cream 50% 50% 11% 11% 25% 40% 20% 50% 10% 25% – 17% 
Colorless – – – – 25% – 20% – 5% 19% 8% 7% 
Metallic – – 11% – – – – 25% – – 8% 3%  

a Species codes are the same as provided in Table 1. 
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it could also reflect differences in methodology, since PMP-BC/ES did 
not have standardized protocols for processing of digestive tract con-
tents in 2010-2013, and the thoroughness of this analysis would have 
varied considerably among professionals and organizations involved. 

The Convention for the Protection of the Marine Environment of the 
North-East Atlantic (OSPAR) established an Ecological Quality Objec-
tive (EcoQO) for levels of plastics in the stomach of northern fulmars 
(Fulmarus glacialis) (OSPAR, 2010), which has been widely used in the 
northern hemisphere (Avery-Gomm et al., 2012; Bond et al., 2014; Kühn 
and van Franeker, 2012; Provencher et al., 2010; Trevail et al., 2015). 
EcoQO performance is defined as the percentage of birds in a sample 
that have 0.1 g or more plastic mass in the stomach, and the OSPAR 
target is to reduce that percentage to under 10%. Ingestion of 0.1 g or 
more of plastics was recorded in 9% of the birds examined in this study. 
However, when each species is considered separately, five species sur-
passed the 10% target: Atlantic-yellow nosed albatross (40%), Cory’s 
shearwater (20%), brown booby (15%), Manx shearwater (15%), and 
Magellanic penguin (13%). Because fulmarine petrels are absent in the 
study region, it is unclear how to interpret our results relative to the 
OSPAR target. If we consider other Procellariiformes as comparable 
indicators, our results suggest a failure to meet the OSPAR target since 
the EcoQO performance for birds in this group was between 15 and 40% 
in this study (except for white-chinned petrels, for which only four in-
dividuals were examined and none had >0.1 g plastics). Future research 
towards the development of ecological quality indexes and targets 
comparable to the OSPAR EcoQO that are specific for the species in the 
Southwest Atlantic would therefore be valuable to guide policies for the 
conservation of marine environment and seabirds in this region. 

Interestingly, our linear model suggests that belonging to a medium- 
sized and non-resident species is associated with an increased proba-
bility of debris ingestion. This may reflect that a high frequency of debris 
ingestion was recorded for Procellariidae (shearwaters and petrels), and 
representatives of this family evaluated in this study happened to all be 
medium-sized and migratory. Previous studies have noted that the 
gizzard of procellariform birds, except for albatrosses, is separated from 
the proventriculus by a narrow isthmus juncture where hard items 
become lodged and are not easily regurgitated, which may explain why 
these species (most of which are medium-sized) often present a higher 
frequency of plastic debris (Furness, 1985; Jiménez et al., 2015; Ryan, 
1987). 

Plastic fragments/pellets and filaments were the most frequently 
occurring types of debris. Unfortunately, due to grinding by the avian 
gizzard, we were not able to confidently differentiate between pellets 
(raw industrial material) and fragments (fragmented final products), as 
is usually done in plastic pollution surveys at beaches and in the ocean 
(Galgani et al., 2019; Kershaw et al., 2019). For filamentous items, 
nearly half of them were monofilaments, the majority of which were 
consistent with fragments of fishing nets. Among other recognizable 
items, we found several items that were presumably used for packaging 
such as plastic membranes, polystyrene foam and ribbons, in addition to 
rubbish bags and a bottle tamper-evident band. This suggests that single- 
use plastics are a significant contributor to the debris ingested by coastal 
and pelagic birds, highlighting the need to adopt policies to reduce their 
production and use (Xanthos and Walker, 2017). 

Concerning the color, the highest frequency of occurrence was 
observed for white/cream, black/grey and blue/green. Not all studies 
quantify the color of debris ingested by coastal and pelagic birds, but 
some have found ‘white/beige’ items were most frequently ingested by 
oystercatchers (Rossi et al., 2019), ‘yellow’ by fulmars (Avery-Gomm 
et al., 2018), ‘dark’ by shearwaters and ‘light’ by coastal birds (Codina- 
García et al., 2013), ‘orange-brown’ by various species (Baak et al., 
2020), ‘brown’ and ‘beige’ by various species (Barbieri, 2009), among 
others. In light of these varied results, it is unclear whether these birds 
actively select some colors, as is known to occur in sea turtles (Santos 
et al., 2016), or if the color of the ingested items is largely driven by their 
abundance. 

We found no apparent geographic pattern in plastic ingestion within 
the study area. Most birds in this study, both with and without ingested 
debris, were collected near the mouth of the Doce River. The Doce River 
basin covers 83,400 km2 including several large cities with a combined 
population of more than 1,000,000 inhabitants (IBGE, 2020). The 
sediment plume formed at Doce River’s mouth is a key source of nu-
trients in this otherwise oligotrophic region, with a high significance for 
coastal cetaceans (Mayorga et al., 2020; Siciliano et al., 2002) and 
coastal and pelagic birds (Bugoni, 2019). Our results suggest that plastic 
ingestion may also be a problem in this area, and therefore the reduction 
of plastic pollution in the Doce River basin could benefit seabirds that 
forage on the Espírito Santo coast. Other key areas where a reduction in 
plastic pollution could benefit seabirds are the Greater Vitória metro-
politan area (with a population of 2,000,000 inhabitants; IBGE, 2020) 
and Guarapari (which receives up to 600,000 tourists each summer; 
Rodrigues, 2019). It is worth highlighting that pollution reduction in 
this region would also benefit migratory species arriving from the 
northern hemisphere (e.g. Cory’s and Manx shearwaters), the southern 
tip of South America (e.g. Magellanic penguin) and remote oceanic 
islands (e.g. Atlantic yellow-nosed albatross). These results highlight the 
need for further studies that identify hotspots of marine debris release 
and accumulation in coastal and offshore waters in this region and their 
overlap with the areas used by resident and migratory seabirds. 

There was an apparent reduction in the frequency of debris ingestion 
during the summer (December to March, see Fig. 2). However, this may 
be due to seasonality of these species’ presence in the region since the 
species with highest prevalence (i.e. procellariform birds and penguins) 
are seasonal migrants in Brazil (Sick, 2001). There was no apparent 
increase in debris ingestion that could be associated with the COVID-19 
pandemic (first human case in Espírito Santo was recorded on 5 March 
2020 and business and school activities were intermittently interrupted 
from 20 March 2020 to 4 April 2021). In other parts of Brazil, beach 
pollution by protective facemasks was noted from June to October 2020, 
with at least one Magellanic penguin dying due to the ingestion of a PFF- 
2 mask (Neto et al., 2021). 

In conclusion, debris ingestion is relatively common in coastal and 
pelagic birds in Eastern Brazil, but it affects species disproportionately, 
with procellariform birds and juvenile Magellanic penguins experi-
encing a greater susceptibility. Despite nearly one-third of the studied 
birds having ingested debris, most items were small enough that they 
probably would not have caused digestive tract obstruction or perfora-
tion. Still, further studies are needed to assess subtler or indirect health 
effects of plastic ingestion such as damage to microscopic features of the 
digestive tract (e.g. proventricular glands, intestinal villi), interference 
with the gut microbiota, release of toxic chemicals, among others. 
Regardless of the health effects of plastic ingestion, our results confirm 
that seabirds are useful indicator species to monitor marine plastic 
pollution in the Southwest Atlantic Ocean. 

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.marpolbul.2021.113046. 
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2017. Presence of plastic particles in waterbirds faeces collected in Spanish lakes. 
Environ. Pollut. 220, 732–736. 
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