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Abstract
The identification of when, how and where animals feed is essential to estimate the amount of energy they obtain and to 
study the processes associated with prey search and consumption. We combined the use of animal-borne video cameras 
and accelerometers to characterise the body and head movements associated to four types of prey capture behaviours in the 
Magellanic Penguin (Spheniscus magellanicus). In addition, we evaluated how the K-Nearest Neighbour (K-NN) algorithm 
recognized these behaviours from acceleration data. Finally, we compared the total capture and the capture per unit time 
(CPUT) derived by identifying prey capture events using the K-NN algorithm to that derived by counting undulations in 
the dive profile (“wiggles”). During captures, body and head movements were highly variable in the tridimensional space. 
Energy expenditure (i.e., VeDBA values) during diving periods with prey captures was from three to four times higher than 
during controls diving periods (i.e., with no capture events). The K-NN classification resulted effective and showed accu-
racy scores above 90% when considering both head and body related features. In addition, when captures were estimated 
using the K-NN method, the CPUT was similar or higher to that estimated by counting wiggles. Our study contributes to the 
knowledge of the trophic ecology of this species and provides an alternative method for estimating prey consumption in the 
Magellanic Penguin and other diving seabirds.

Introduction

The identification of when, how and where animals feed is 
essential to estimate the amount of energy they obtain (Sala 
et al. 2012a, b; Gallon et al. 2013; Skinner et al. 2014), to 
study the processes associated with prey search and con-
sumption (Watanabe et al. 2019), and to evaluate population 
responses to environmental changes (Carroll et al. 2018). 
In the marine realm, prey capture events by top predators 
have been particularly difficult to detect, since animals feed 
far away from the coast and, in most of the cases, below the 
water surface (but see Takahashi et al. 2004b; Redfern et al. 
2006; Naito 2007). Fortunately, these limitations have been 
tackled by the employment of sensors that provide indirect 
parameters of prey capture events such as stomach, oesopha-
geal or visceral temperature (Wilson et al. 1992; Charras-
sin et al. 2001; Austin et al. 2006), beak or mouth opening 
(Wilson et al. 2002a, b; Takahashi et al. 2004a; Fossette 
et al. 2008), or head and jaw movements (Ropert-Coudert 
et al. 2004; Liebsch et al. 2007; Okuyama et al. 2013; Guinet 
et al. 2014).
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During the last three decades the indirect detection of 
capture events by means of electronic signals has been 
complemented by the deployment of video or still images 
loggers (Ponganis et al. 2000; Heithaus et al. 2002). Due 
to their size and weight, the first cameras were deployed 
on large species such as the Loggerhead (Caretta caretta) 
and Leatherback (Dermochelys coriacea) turtles (Marshall 
1998), the Weddell Seal (Leptonychotes weddellii) (Davis 
et al. 1999) and the Emperor Penguin (Aptenodytes forsteri) 
(Ponganis et al. 2000). However, technological advances 
enabled the development of small video recorders that can 
even be deployed on species of the size of a crow (Rutz 
and Troscianko 2013). Even though, due to battery limita-
tions, small video cameras cannot record for long periods of 
time, the information they provide is particularly valuable 
to validate electronic signals recorded by other sensors such 
as tri-axial accelerometers (Watanabe and Takahashi 2013; 
Carroll et al. 2014; Viviant et al. 2014; Volpov et al. 2015). 
Contrary to cameras, accelerometers can record at high fre-
quencies (e.g., 300 Hz or higher) and for longer periods of 
time (e.g., up to 60 days at 25 Hz for a 3 g device). Once the 
acceleration signal associated to a particular behaviour (e.g., 
capture event) has been validated, the behaviour can be iden-
tified from acceleration signals without the need of a camera. 
Using video-cameras in the wild to determine prey capture 
event signals has a great potential and during the last years 
has allowed researchers to test Optimal Foraging Theory 
predictions in the wild (Watanabe et al. 2014; Foo et al. 
2016; Chimienti et al. 2017), to determine the distribution 
of prey encounter events in relation to oceanographic fea-
tures such as water temperature, salinity and light level (Gui-
net et al. 2014), and to examine relationships between prey 
distribution and spatially explicit patterns of prey capture 
(Carroll et al. 2017). Moreover, since dynamic acceleration 
can predict the costs of movement for terrestrial, aquatic and 
even aerial locomotion (by means of overall dynamic body 
acceleration (ODBA) or vectorial dynamic body accelera-
tion (VeDBA), see Halsey et al. 2011; Qasem et al. 2012; 
Wilson et al. 2019), it offers the opportunity to estimate the 
energy expenditure associated to both pursuit and capture 
behaviours (Wilson et al. 2013; Tennessen et al. 2019).

Identification of discrete animal behaviours by means 
of acceleration data is a tedious and time consuming task, 
especially for big data. This led researchers to consider 
machine learning algorithms to automatically classify large 
acceleration datasets into behavioural classes (Nathan et al. 
2012; Ladds et al. 2017; Valletta et al. 2017; Jeantet et al. 
2018; Bidder et al. 2020; Chakravarty et al. 2020). Among 
the supervised learning algorithms commonly used are 
the K-Nearest Neighbour (K-NN) algorithm (Bidder et al. 
2014), Supported Vector Machines (SVMs) (Cortes and 
Vapnik 1995; Martiskainen et al. 2009), Classification and 
Regression Trees (CART), Random Forests (RFs) (Breiman 

2001; Hutchinson and Gigerenzer 2005; Cutler et al. 2007; 
Nadimi et al. 2008; Pavey et al. 2017) and Artificial Neural 
Networks (ANNs) (Nathan et al. 2012; Nadimi et al. 2012; 
Gutierrez-Galan et al. 2018). These algorithms have rec-
ognized different behaviours such as flying, walking and 
swimming, with a high rate of accuracy (Grünewälder et al. 
2012; McClune et al. 2014; Resheff et al. 2014; Williams 
et al. 2015; Sur et al. 2017; Bidder et al. 2020). In the marine 
environment, feeding events have been detected by means 
of SVMs and CART algorithms with accuracies that range 
between 78 and almost 90% in Little penguins (Eudyptula 
minor), Australian sea lions (Neophoca cinerea), seals 
(Arctocephalus pusillus doriferus, A. forsteri, A. tropicalis) 
and sea turtles (Chelonia mydas, Eretmochelys imbricata 
and Caretta caretta) (Carroll et al. 2014; Ladds et al. 2017; 
Jeantet et al. 2018).

The Magellanic Penguin (Spheniscus magellanicus) is the 
most abundant seabird species breeding along the Patagon-
ian coast of Argentina, being widely distributed from Islote 
Lobos, Río Negro Province (41°S) to the Beagle Channel, 
Tierra del Fuego (54°S) (Yorio et al. 1999; Schiavini et al. 
2005; Pozzi et al. 2015). Magellanic penguins are visual 
hunters (Handley et al. 2018) that feed mainly on pelagic 
schooling fish such as Argentinean Anchovy (Engraulis 
anchoita) and Patagonian Sprat (Sprattus fuegensis) north 
of 44°S and south of 50°S, respectively (Frere et al. 1996). 
Schools are usually approached from below and depolarized 
making prey more susceptible to predation (Ropert-Coud-
ert et al. 2001; Simeone and Wilson 2003; Handley et al. 
2018). Traditionally, Magellanic Penguin prey consump-
tion has been estimated by the quantification of beak open-
ing events (Wilson et al. 2002a, b; Takahashi et al. 2004a) 
and by means of stomach or esophagus temperature sensors 
(Wilson et al. 1992; Charrassin et al. 2001). Even though 
these methods proved to be highly accurate (Hanuise et al. 
2010), they are quite invasive, complex to implement and 
fail to detect multiple rapid ingestions of small prey (Viviant 
et al. 2010; Kokubun et al. 2011). A less accurate but sim-
pler alternative for the estimation of prey capture events is 
to detect and quantify undulations in the bottom phase dive 
profile commonly known as "wiggles" (Wilson and Liebsch. 
2003; Bost et al. 2007; Sala et al. 2012b). However, one 
drawback the wiggles technique presents is that undulations 
are computed exclusively during the bottom phase of dives 
and, even though most of the captures take place during this 
diving phase, Magellanic penguins (as do other penguin spe-
cies), also capture prey in other diving phases such as during 
the ascent and close to the water surface on dives less than 
2 m depth (Gómez-Laich et al. 2018).

In the present paper, we first describe the body and head 
acceleration signals associated to four different types of 
Magellanic penguins’ prey capture events: (1) those taking 
place at the bottom phase of dives, (2) those taking place 
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during the ascent phase, (3) those occurring during the first 
meters of the water column when birds are resurfacing, and 
(4) those inside a shoal independently of the diving phase in 
which they occurred. Secondly, due to its computationally 
simplicity and usefulness in classifying different types of 
behaviours (Keller et al. 1985; Bidder et al 2014, 2020) we 
investigated if the K-NN algorithm can identify these four 
types of feeding behaviours from body and head accelera-
tion data. Finally, we compared the amount of captures and 
capture per unit time (CPUT) derived by identifying prey 
capture events using the K-NN algorithm to that derived by 
counting the number of undulations in the dive profile (i.e., 
wiggles) of individuals from two patagonian colonies that 
exhibit different foraging dynamics, namely Punta Norte/San 
Lorenzo and Cabo dos Bahías.

Materials and methods

Study site

Fieldwork was conducted at Punta Norte/San Lorenzo 
(42°04’S, 63º49’W) and  Cabo dos Bahías (44°54´S, 
65°32´W) Magellanic Penguin colonies during the early 
chick-rearing period between November the 25th and 
December the 10th of 2015 and 2016.

Deployment of devices

Nine Magellanic penguins (five from Punta Norte/San Lor-
enzo and four from Cabo dos Bahías) brooding at least one 
chick less than 10 days, were instrumented with: (1) a sub-
mersible video camera (DVL400M065, Little Leonardo Cor-
poration, Japan, 61 mm in length, 21 mm in width, 15 mm in 
height, 29 g, 1,280 × 960 pixels, 30 frames per second, 6 h 
battery life), (2) an electronic activity recorder with pres-
sure, temperature and tri-axial acceleration sensors (AXY 
Depth, Technosmart, Rome, Italy, 31 mm in length, 12 mm 
in width, 11 mm in height, 6.5 g), and 3) an accelerometer 
(Technosmart, Rome, Italy, 50 mm in length, 8 mm in width, 
3 mm in height, 2 g). Ten additional Magellanic penguins 
(five from Punta Norte/San Lorenzo and five from Cabo dos 
Bahías) were equipped with AXY Depth only. Cameras were 
programmed to record continuously, five started recording 
in the morning of the day after deployment, since Magel-
lanic penguins begin foraging at dawn (Sala 2013) and the 
remaining four started recording on the day after deployment 
(12 pm approximately). The electronic activity recorders 
(i.e., AXY Depth) were set to record acceleration at 25 Hz 
and pressure and temperature at 1 Hz, while the accelerom-
eters were programmed to record at 25 Hz.

Each bird was captured of its nest and equipped with the 
accelerometer on the head, the camera on the upper back 

and the AXY Depth on the lower back (Fig. 1). The three 
instruments were attached to the feathers using Tesa® tape 
following Wilson et al. (1997). In all cases, the instrumen-
tation procedure was completed in less than five minutes 
and birds immediately returned to the nest. Each penguin 
was allowed to forage for a single trip before the devices 
were retrieved. All birds carrying devices continued to feed 
their chicks normally after being instrumented. At Cabo 
dos Bahías trips from instrumented animals were similar in 
duration to those from uninstrumented animals (G. Blanco 
and F. Quintana unpub. data). Unfortunately, at Punta Norte 
we did not document the trip duration of unequipped birds. 
However, during both years (2015 and 2016) instrumented 
animals from this colony foraged for about 24 h. This is the 
average foraging trip duration for “normal” years and under 
this type of years the harmful effects of external tags would 
be practically negligible (Wilson et al. 2015).

Data analysis

Fifty hours of video recording were analysed using the 
Kinovea free video player software (Kinovea Creative Com-
mons Attribution 2006). On the video images, dives and 
dive phases (i.e., descent, bottom and ascent) were visu-
ally distinguished by looking at penguins’ body position in 
relation to light intensity. The descent phase was defined as 
the interval from the time the camera was being observed 
to submerge to the time the animal was observed to stop 
swimming downwards. The ascent phase was defined as 
the interval from the time the animal was observed to swim 
upwards until the bird reached the sea surface. The bottom 
phase was defined as the interval from the time the bird 
finished swimming downwards until it started swimming 
upwards. Four types of prey capture events were identified 
from the videos: (1) isolated prey capture events taking place 

Fig. 1  Ilustration showing how the surge, sway and heave accelera-
tion measurements relate to the penguin’s movements and how the 
pitch and roll values relate to the bird’s body angle. The position of 
(1) the camera logger, (2) the AXY Depth, and (3) the head acceler-
ometer is also indicated
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during the bottom phase of dives performed at depths where 
visual inspection was possible (i.e., a maximum of 40 m 
depth), (2) isolated prey capture events occurring during the 
ascent phase, (3) isolated prey capture events taking place 
during the first meters of the water column during shallow 
dives (i.e., < 6 m) when penguins were resurfacing, and (4) 
prey capture events inside fish shoals observed at depths 
that varied between 3 and 40 m, independently of the diving 
phase in which they occurred (Fig. 2). To compare move-
ments associated to captures to those associated to regular 
swimming, for each prey capture behaviour an equal number 
of swimming sections in which no prey capture or capture 
attempt took place were randomly selected. These selected 
swimming periods were similar in depth and duration to 
capture events and were considered as “control” sections.

The time stamps of depth, body and head accelera-
tion data were aligned visually to within ± 0.5 s using the 
Software Multi-trace (Jensen Software Systems, Laboe, 

Germany). After this, the behaviours identified in the 
videos were matched to the acceleration and depth data 
using custom matching functions in R version 3.6.1 (R 
Core Team 2019) based on a common time vector synced 
to both datasets. The acceleration signal associated to each 
capture extended from the moment a change in the regu-
lar acceleration profile was detected to the moment the 
acceleration signal regularized. That selection was made 
because the reaction associated with a feeding stimulus 
also includes the instant before and after the capture takes 
place. Once identified, we determined the total accel-
eration of translational motions: surge (horizontal in the 
direction of the movement), sway (side to side) and heave 
(vertical) (Fig. 1) from each recognized behaviour and its 
respective control period. The static and dynamic accel-
eration component of each axis was obtained using a run-
ning mean of 3 s following Shepard et al. (2008). The 
static component of each channel was used to compute 

Fig. 2  Still frames obtained from a video logger attached to the back 
of a Magellanic Penguin (Spheniscus magellanicus). Image a shows 
a penguin pursuing a fish during the bottom phase of a dive, b a pen-

guin pursuing a fish during the ascent phase of a dive, c a penguin 
capturing fish close to the sea surface and d a penguin pursuing fish 
through a shoal
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the pitch and roll angles (i.e., rotational motion) (Fig. 1) 
and smoothed over 1  s (Gunner et  al. 2020). VeDBA 
was calculated using the vectorial sum of the dynamic 
components of acceleration from the three axes (Qasem 
et al. 2012) and smoothed over 1 s to eliminate individual 
strides and have a better estimation of the costs of move-
ment (Wilson et al. 2019).

To characterise penguins’ movements, once the tri-axial 
acceleration signals (from the body and the head) of captures 
and controls were identified, we calculated the following 
parameters from the raw information of each acceleration 
channel: mean, standard deviation, minimum and maxi-
mum. Furthermore, the same parameters mentioned above 
were computed for body pitch angle, body roll angle, body 
VeDBA and depth.

K‑Nearest Neighbour analysis

For the automatic classification analysis we implemented the 
K-Nearest Neighbour (K-NN) algorithm with Euclidean dis-
tance to identify each of the eight types of behaviours (i.e., 
the four prey capture behaviours previously defined above 
and the four controls for such behaviours). The following 
features were calculated for each of the six raw acceleration 
channels (three from the body and three from the head), 
VeDBA, body pitch and roll angles and depth: mean, mini-
mum, maximum and standard deviation. All these features 
were calculated using a sliding sample window of 2 s (equal-
ing 50 samples of data) with a 1.96 s overlap (49 samples 
of data). Since the distance formula employed in the K-NN 
method is highly dependent on the scale in which variables 
are measured (Lantz 2015), features were rescaled using the 
min–max normalization.

Due to the fact that we had an imbalanced data set, with 
some categories less represented than others, we balanced 
the full sample by randomly selecting similar proportions 
of each type of prey capture behaviour. After this, we ran-
domly divided the segmented and annotated data into a 
training data set (70% of the data) and a testing data set 
(30% of the data). The training data set was used to train 
the model by performing 10 repetitions of 10-fold cross-
validation by means of the train function from the caret R 
package (Kuhn 2016) using a tuneLength parameter value 
of 20. Once the model had been trained and the optimal K 
value estimated, we used the predict function to classify the 
testing data set. The confusionMatrix function allowed us to 
compare the predicted classes of our testing data set with the 
known classes (determined by the videos) and to determine 
for each class in the data set if the classification was either 
True Positive (TP), False Positive (FP), True Negative (TN) 
or False Negative (FP). After this, the following series of 
performance metrics were calculated: 

To determine if the classification performance diminished 
when only the body or the head features were taken into 
account, the above mentioned procedure was ran two more 
times: (1) considering only the body features and (2) con-
sidering only the head features.

Prey capture rates

The diving behaviour of 10 additional Magellanic penguins 
(five from Punta Norte/San Lorenzo and five from Cabo 
dos Bahías) (see above), carrying only an AXY Depth on 
the lower back, was analysed using the program MTDIVE 
(Jensen Software System) (see Sala et al. 2012b, 2014 for 
details). For each submersion that exceeded 2 m depth, a 
single wiggle or undulation in the dive profile (Simeone 
and Wilson 2003) was defined as two or three serial points 
of inflexion (SPI) of > 0.5 m/s (see Sala et al. 2012b for 
details). Each wiggle was taken to represent a prey capture 
event and was used to derive the capture per minute of time 
underwater (CPUT). In addition, the best K-NN algorithm 
using only body acceleration and depth derived features 
(see results) was applied to the foraging trip data of these 
10 penguins. Data were first preprocessed to obtain all the 
previously defined features over 2 s segments with a 1.96 s 
overlap. After running the K-NN, for each dive identified by 
the MTDIVE (see above), we determined the CPUT. To do 
this, first we summed the amount of time assigned to each 
type of capture. To translate the amount of time invested on 
each capture to the number of consumed prey items, based 
on the video information, a capture at the bottom of a dive 
was considered to have a mean duration of 19 s, a capture 
during the ascent phase 20 s, a capture inside a shoal 23 s 
and a capture near the surface 7 s. Finally, the number of 
each type of capture per dive was summed and used to cal-
culate the CPUT.

Sensitivity =
TP

TP + FN

Specificity =
TN

TN + FP

Prevalence =
TP + FN

TN + TP + FN + FP

Accuracy =
TN + TP

TN + TP + FN + FP

Positive predicted value =
TP

TP + FP

Negative predicted value =
TN

TN + FN
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Statistical analysis

The acceleration parameters (mean, standard deviation, min-
imum and maximum), pitch, roll, body VeDBA and depth of 
each type of prey capture event and its corresponding control 
were compared through t or Mann–Whitney test depending 
on data characteristics. For each of these analyses, data nor-
mality was tested through the Shapiro–Wilk test and homo-
scedasticity by means of F-test.

Differences between the mean CPUT estimated using the 
K-NN algorithm and wiggles for each animal were compared 
by a Linear Mixed Model (LMM) using the glmmTMB func-
tion (Brooks et al. 2017). In this test, CPUT was set as the 
response variable, method (K-NN vs wiggles) was set as a 
fixed explanatory variable, while dive was set as a random 
explanatory variable. The significance of the fixed factor 
was tested by comparing the model with and without it using 
the function anova of the stats package for R 3.6.1 (R Core 
Team 2019). All values are reported as means ± s.d. and all 
differences were considered significant at p < 0.05.

Results

Prey capture behaviour

During the recorded period (50 h), a total of 65 prey capture 
events and an equal number of control behaviours were iden-
tified. Of the total capture events, 20 (30.8%) took place dur-
ing the bottom phase, 15 (23.1%) during the ascent phase (an 
example of this is given in Electronic Supplementary Mate-
rial ESM 1), eight (12.3%) on the first meters of the water 
column and 22 (33.8%) inside of a fish shoal. Among all 
capture events, those that took place during the first meters 
of the water column were the least frequent and occurred 
at a mean depth of 6 m ± 5.5 m. Captures inside fish shoals 
were not associated to any dive phase; in some cases they 
took place along all the dive phases (descent, bottom and 
ascent), while in others, they occurred in one or two of them.

Body acceleration and VeDBA

During the four types of prey capture events, Magellanic 
Penguin body movements were highly variable in the tridi-
mensional space (indicated by higher standard deviation val-
ues) in comparison to control periods (Table 1). All capture 
events except those that took place during the first meters of 
the water column presented a higher variation in pitch and 
roll angles than those registered during controls (Table 1). 
Only during captures at the bottom and inside of a shoal, the 
dorso-ventral (heave) mean acceleration values were smaller 
than during controls (Table 1).

While swimming and capturing prey along the bottom 
phase of dives, penguins slightly tilted their body up (swim-
ming mean pitch angle = 15.72° ± 10°, capture at the bot-
tom mean pitch angle = 22.90° ± 14°) (Table 1). Penguins 
ascended passively along the water column, without any 
variation in the tri-axial body acceleration values and with 
a mean pitch body angle of 45° ± 17° (Table 1). During cap-
tures at the bottom and during the ascent animals made sub-
stantial movements along the three axes (Fig. 3a, b).

During the four different types of prey capture events 
mean VeDBA values were similar (ANOVA, F3,61 = 1.39, 
p = 0.25) and oscillated around 0.5, reaching values up to 2.5 
during captures inside a shoal and close to the water surface 
(Fig. 4). Mean VeDBA values during capture events were 
between three and four times greater than the mean VeDBA 
values of control behaviours (Table 1).

Head acceleration

Similarly to body movements, during prey captures, head 
movements presented an important variation in the three 
dimensions in comparison to control behaviours (Table 2). 
Mean acceleration values were similar between captures and 
controls for all head motion axes, except for the translation 
of the head in the vertical axis (heave). The mean verti-
cal motion of penguin head during captures at the bottom, 
near the surface and inside a shoal were lower than controls 
(Table 2). During captures at the bottom, head dorso-ventral 
movements presented a cyclic pattern with values fluctuating 
around 1 g (Fig. 3c). In contrast, sway and surge acceleration 
values did not present great oscillations (Fig. 3c). During the 
ascent, head movements showed a regular pattern without 
much variation in none of the three axes (Fig. 3d). However, 
captures were characterised by high fluctuations in the accel-
eration signals along the three axes (Fig. 3d).

K‑NN classifier

A total of 8783 behavioural segments were used for the 
K-NN, 6148 segments were used for training (70%) and 
2632 for testing (30%). The three K-NN models performed 
best with a K value of 5 (Fig. 5) and presented balanced 
accuracy values above 85%, meaning that more than 85% of 
the segments were correctly classified. The K-NN includ-
ing all the features showed the highest classification accu-
racy (93.6% overall accuracy, Kappa = 0.93), followed by 
the K-NN including the body and depth features with clas-
sification of every class > 89% (91.3% overall accuracy, 
Kappa = 0.90) (Table 3). The less accurate K-NN model was 
the one that only included the head features (85.6% overall 
accuracy, Kappa = 0.84) (Table 3). Classification accuracy 
was not substantially affected by subtracting body or head 
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acceleration features (Table 3). However, sensitivity (frac-
tion of segments correctly predicted as positives for a given 
class of behaviour) slightly decreased when predictors were 
subtracted (Table 3). In general, along the three K-NN mod-
els, captures presented less sensitivity values than swimming 
periods (Table 3) and in the three K-NN models, captures 
that took place during the bottom phase of a dive and inside 
a shoal had the lower sensitivity values (Table 3). 

Prey capture rates

The total amount of captures identified by means of the 
K-NN algorithm was, in all penguins but one, higher than the 
amount of captures estimated by means of counting wiggles 
(Table 4). In these penguins, the K-NN recognized on average 
10% (range: 3–16%) and 77% (range: 11–148%) more capture 
events than those estimated by wiggle identification, for Punta 
Norte/San Lorenzo and Cabo dos Bahías, respectively. The 
CPUT when captures were estimated using the K-NN method 
was similar or higher than that estimated by counting wig-
gles in four of the five birds from Punta Norte/San Lorenzo 
(Table 4). However, the CPUT estimated by the K-NN method 

Fig. 3  Example of heave, sway and surge acceleration signals from 
the body and head of diving Magellanic penguins Spheniscus magel-
lanicus during a control period and a prey capture on the bottom 

phase of a dive (a and c) and during a control period and a prey cap-
ture during the ascent phase of a dive (b and d)
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was higher than that estimated by counting wiggles for the five 
penguins from Cabo dos Bahías (Table 4).

Discussion

We successfully used the combination of video cameras, 
depth, head and body acceleration data to determine Magel-
lanic penguins’ prey capture events, distinguish different 
prey capture behaviours and associate each one of them to 
particular head and body movements.

Of all the acceleration-derived metrics, the standard devi-
ation was the one that differed the most between capture and 

control behaviours. This finding agrees with previous studies 
that have already indicated the importance of standard devia-
tion as a good behaviour predictor (Chimienti et al. 2017; 
Jeantet et al. 2018). Of the three acceleration channels, the 
dorso-ventral (i.e., heave acceleration signal) showed the 
greatest variation during capture events in comparison to 
control periods. This would be principally associated with 
the increase flipper beat amplitude and frequency necessary 
to swim faster when penguins approach prey underwater 
(Watanuki et al. 2003; Kato et al. 2006; Jeanniard-du-Dot 
et al. 2016). Prey capture events were also characterised 
by an important variation in the surge acceleration signal 
(i.e., forward–backward motion) as a consequence of the 

Fig. 4  Vectorial dynamic body acceleration (VeDBA) values during control periods (blue) and prey capture events (violet) on the bottom phase 
of a dive (a), inside a shoal (b), during the ascent phase of a dive (c) and during the first meters of the water column (d)
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higher wing flapping frequency and strength that generates 
a greater forward propulsion (Arai et al. 2000). Finally, the 
higher oscillations in the pitch and roll angles during cap-
tures seemed to be associated to the prey capture strategy 
described for the Magellanic Penguin which consists in 
approaching prey from below and tilt the body sideways to 
change swimming direction rapidly (Wilson and Duffy 1986; 
Wilson et al. 1987; Rodary et al. 2000; Ropert-Coudert et al. 
2001; Takahashi et al. 2004b). All of these results are in 
line with previous findings which indicate that Magellanic 
penguins “speed up” to feed on prey that usually travels at 
similar speeds as penguins, such as anchovy and sardine 
(Wilson et al. 2002a, b). The similarity in Magellanic pen-
guins’ head and body movements would be principally 
linked to the compact body these birds have (Guinard et al. 
2010). The short neck condition and highly hydrodynamic 
body shape have been deemed to be advantageous features 
for penguins to reach higher velocities during swimming and 
to increase capture efficiency (Wilkinson and Ruxton 2012). 
In addition, the short neck would minimise the body surface 
area, reducing the loss of heat during the long periods at sea 
(Wilson et al. 2017).

The application of a simple and easy to implement super-
vised algorithm such as the K-NN showed accuracy scores 
above 90% when considering both head and body related 
features. The high performance of the algorithm is probably 
related to the marked differences in the standard deviation 
values as well as in the VeDBA between capture and control 
behaviours (see above). In general, the three models pro-
posed in this study (i.e., body and head, body only and head Ta
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only features) performed well to determine prey capture 
events. However, when prey capture took place at the bot-
tom and inside a shoal, the head-featured model computed 
less sensitivity. The lack of distinction between these two 
types of captures when only head data were included in the 
algorithm would be principally related to the fact that neither 
VeDBA nor depth features were considered. Moreover, even 
though we treated these two types of captures as different 
behaviours they share several characteristics. For example, 
when capturing prey at the bottom penguins could also be 
swimming inside a shoal but the low light conditions associ-
ated with deep waters precluded us from seeing it. Unfortu-
nately, 36% of the total amount of time penguins spent at the 
bottom was unusable because of the low light levels, thus a 
bigger sample size and the development of cameras with a 
light source is crucial to clarify this particular point.

The high classification accuracy scores obtained by the 
K-NN algorithm when only body features were considered 
allowed us to estimate the total captures and the CPUT of 10 
foraging birds, and compared them with the amount of cap-
tures and the CPUT obtained by means of wiggles in two dif-
ferent colonies. Differences between both methodologies were 
particularly important at Cabo dos Bahías, where the K-NN 
algorithm recognized significantly more captures than the wig-
gle technique. Observed inter-colony differences could be a 
consequence of a differential prey items/sizes adult breeders 
from both colonies consume. As mentioned, Magellanic pen-
guins from both colonies (located north of 44° S) are predo-
mintantly monophagic, consuming Argentine Anchovy (Frere 
et al. 1996; Castillo et al. 2019; Fernandez et al. 2019). How-
ever, Cabo dos Bahías is located at the southern limit of the 
latitudinal range of such main prey item, where inter-annual 
changes in abundance and/or availability have been observed 

Table 3  Model accuracy parameters for supervised classification by means of K-Nearest Neighbour (K-NN) models of accelerometer and depth 
data from free living Magellanic penguins Spheniscus magellanicus 

Parameters are reported for the three proposed models: “All features” which included features derived from the body and head acceleration and 
depth  data; “Body acceleration  and depth features” which included only features derived from body acceleration and depth data  and “Head 
acceleration features” which only involved features derived from head acceleration data

Model Diving Phase Behaviour Sensitivity Specificity Pos. Pred. Value Neg. Pred. 
Value

Prevalence Balanced 
accuracy

All features Bottom Capture 0.85 0.98 0.87 0.98 0.12 0.92
No capture 0.97 0.99 0.95 1.00 0.12 0.98

Shoal Capture 0.85 0.99 0.90 0.98 0.12 0.92
No capture 0.93 0.99 0.96 0.99 0.13 0.96

Ascent Capture 0.91 0.99 0.94 0.99 0.13 0.95
No capture 0.96 0.99 0.95 0.99 0.14 0.98

First meters Capture 1.00 0.99 0.92 1.00 0.12 0.99
No capture 1.00 1.00 0.98 1.00 0.12 1.00

Body accel-
eration 
and depth 
features

Bottom Capture 0.81 0.97 0.79 0.97 0.12 0.89

No capture 0.91 0.99 0.91 0.99 0.13 0.95
Shoal Capture 0.83 0.98 0.87 0.98 0.11 0.90

No capture 0.89 0.99 0.94 0.98 0.13 0.94
Ascent Capture 0.92 0.98 0.90 0.99 0.13 0.95

No capture 0.94 0.99 0.94 0.99 0.13 0.97
First meters Capture 1.00 0.99 0.96 1.00 0.12 1.00

No capture 1.00 1.00 0.99 1.00 0.13 1.00
Head accelera-

tion features
Bottom Capture 0.75 0.97 0.78 0.96 0.13 0.86

No capture 0.92 0.98 0.86 0.99 0.12 0.95
Shoal Capture 0.77 0.97 0.81 0.97 0.12 0.87

No capture 0.80 0.99 0.90 0.97 0.13 0.89
Ascent Capture 0.79 0.97 0.81 0.97 0.13 0.88

No capture 0.87 0.98 0.87 0.98 0.13 0.92
First meters Capture 0.96 0.98 0.89 0.99 0.12 0.97

No capture 1.00 0.99 0.93 1.00 0.12 0.99
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(Hansen et al. 2001). Such site-specific variability would be 
responsible for the high inter-seasonal variation in the forag-
ing and diving behaviour of Magellanic penguins from this 
particular colony (G. Blanco and F. Quintana unpubl data). It 
is reasonable to think that, under these fluctuations in anchovy 
abundance and availability, penguins from Cabo dos Bahías 
would be consuming alternative sizes of their main prey or 
even different prey items that would not necessarily imply a 
wiggle leading, in this way, to an important difference in the 
CPUT estimated by both methodologies.

In conclusion, records of tri-axial body acceleration data 
present an easy and accurate tool to determine prey capture 
events in the Magellanic Penguin and probably other pen-
guin species of the genus Spheniscus that principally feed 
on schooled pelagic fish (Wilson and Wilson 1990). As an 
advantage over wiggles, accelerometer data not only offers 
the opportunity to identify different types of prey capture 
behaviours but also to estimate the energy expenditure asso-
ciate to each capture via VeDBA or ODBA metrics (Wilson 
et al. 2019). In summary, from a methodological point of 
view, our study makes an important contribution to improve 
the knowledge of the trophic ecology of this species and 
provides an alternative and precise way of estimating prey 
consumption in other related diving seabirds.
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Table 4  Number of prey captures and capture per unit effort (CPUT) (±SD) estimated by means of the K-Nearest Neighbour (K-NN) algorithm 
and by means of counting wiggles (see text) during the foraging trip of 10 Magellanic penguins Spheniscus magellanicus 

ID Colony Method Test

K-NN Wiggles

Bottom phase Inside a shoal Ascent phase First meters Total CPUT Total CPUT

1 PN 21 83 14 9 127 0.84 ± 0.70 109 0.71 ± 0.32 z = 2.1
p = 0.04

2 PN 244 84 88 66 482 0.77 ± 0.60 545 0.93 ± 0.53 z = 4.0
p < 0.01

3 PN 228 50 56 11 345 0.84 ± 0.46 304 0.68 ± 0.39 z =  – 4.5
p < 0.01

4 PN 335 82 31 41 489 0.83 ± 0.60 479 0.82 ± 0.63 z =  – 0.2
p = 0.85

5 PN 341 68 25 38 472 0.74 ± 0.56 436 0.71 ± 0.32 z =  – 0.9
p = 0.30

6 CDB 145 56 0 16 217 0.74 ± 0.73 196 0.69 ± 0.56 z =  – 2.2
p = 0.03

7 CDB 304 4 35 8 351 1.02 ± 0.44 186 0.57 ± 0.33 z =  – 15.5
p < 0.01

8 CDB 219 44 4 1 268 0.79 ± 0.36 227 0.69 ± 0.41 z =  – 3.75
p < 0.01

9 CDB 332 2 69 26 429 0.79 ± 0.62 173 0.43 ± 0.38 z =  – 17.14
p < 0.01

10 CDB 181 83 26 5 295 0.44 ± 0.53 134 0.27 ± 0.11 z =  – 18.5
p < 0.01
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No. 075-SsCyAP/15). During instrumentation, birds were handled as 
quickly and efficiently as possible.
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