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Construction of energy landscapes can
clarify the movement and distribution
of foraging animals
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Variation in the physical characteristics of the environment should impact the movement energetics of
animals. Although cognizance of this may help interpret movement ecology, determination of the
landscape-dependent energy expenditure of wild animals is problematic. We used accelerometers in
animal-attached tags to derive energy expenditure in 54 free-living Imperial cormorants Phalacrocorax
atriceps and construct an energy landscape of the area around a breeding colony. Examination of the
space use of a further 74 birds over 4 years showed that foraging areas selected varied considerably in dis-
tance from the colony and water depth, but were characterized by minimal power requirements compared
with other areas in the available landscape. This accords with classic optimal foraging concepts, which
state that animals should maximize net energy gain by minimizing costs where possible and show how
deriving energy landscapes can help understand how and why animals distribute themselves in space.
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1. INTRODUCTION

The concept that animals should forage optimally [1] has
been pivotal in giving biologists a framework with which
to examine the mechanisms behind energy acquisition [2].
A central tenet is that animals should minimize energy
expenditure with respect to energy acquisition, maximizing
their net rate of energy gain [2]. Foraging costs may be
couched in terms of time or energy [3] but those calcula-
ted [4] generally ignore the variation in the physical
manifestation of the landscape that may profoundly affect
movement costs. For example, although it is widely
accepted that many birds enhance their flight capacities
by making use of predictable sources of rising air [5] and
that terrestrial animals expend more energy moving over
soft substrate than hard [6], general consideration of the
energetic costs of animals moving through their variable
landscapes is minimal (but see [7]). Landscapes vary in
character in both space and time with, for example, hetero-
geneous vegetation landscapes changing during succession
[8,9] and over the growing season [10], becoming corre-
spondingly more problematic for animals to move
through [11]. Indeed, the degree of variation in the land-
scape (e.g. incline, substrate- and vegetation-type) [12]
will be responsible for varying movement costs and this
variation translates into an effective energy landscape for
animals foraging through, or in, it [7]. Ultimately, the
costs of moving in particular landscapes should prove
important for informing movement ecology [13] and help
us understand why and how animals distribute themselves
in space [14]. We expect variability in the energy land-
scape to exert selection pressure on animals to modulate
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their foraging strategies accordingly although to our
knowledge this has not been examined explicitly in an
optimal foraging context. Specifically, where food is not
distributed in a manner that links to the energy landscape,
we would expect animals to use preferentially areas of their
energy landscape which result in minimized power costs
in accordance with maximizing their net energetic gain
during foraging.

This study examines animals foraging in a variable
energy landscape using animal-attached devices to derive
the energetic costs of a foraging, benthic-feeding diver,
the Imperial cormorant Phalacrocorax atriceps feeding near
Punta Leon, Chubut, Argentina. These birds can be cap-
tured readily and equipped with tags to record position
and depth [15] as well as new devices used to record tri-
axial acceleration [16]. Tri-axial acceleration data can be
used to calculate a powerful linear proxy for metabolic
power, overall dynamic body acceleration (ODBA) [17],
which can be further converted directly into energy
expenditure [17]. Although Imperial cormorants may
occasionally feed in groups on pelagic school fish in the
upper water layers [18], they generally hunt solitarily,
executing benthic dives to the seabed [19]. Such dives to
the seabed are executed virtually exclusively by birds at
Punta Leon [20] in a foraging area consisting exclusively
of an extensive sandy substrate [21]. Here, they exploit
benthic prey such as Raneya fluminensis, Triathalassothia
argentina and Octopus tehuelchus) [22], all species which
are widely distributed in coastal waters over the Patagonian
Shelf (www.fishbase.org) [23]. The birds forage at variable
distances from their colony, exploit water of different
depths and thus operate in a simple, well-defined energy
landscape because both distance from the colony and
water depth relate to energy expenditure exploiting prey.
We hypothesize that birds should preferentially use areas
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where foraging costs are minimal, moving to the more
demanding regions as prey become depleted.

2. MATERIAL AND METHODS

(a) Device deployment

During the austral summers of 2004, 2005, 2007 and 2008, 132
Imperial cormorants, P atriceps brooding small chicks at Punta
Leon, Argentina were fitted with logging devices. A total of 74
birds carried global positioning system (GPS) devices (Ocean
Earth Technologies, Inc., Kiel, Germany) recording position at
1 Hz with an accuracy of better than 7 m, whereas 54 birds
carried units measuring, among other things, pressure and
tri-axial acceleration (‘daily diaries’) [16] at 6 Hz with depth
resolution of better than 1 cm. Birds were released and devices
recovered after a single forging trip before data were downloaded.

(b) Calculation of position and energy

GPS positions were sorted to determine the position of fora-
ging birds, which were defined by lowtravelling speeds
(<5kmh™") at sea with fixes punctuated by loss of GPS
fixes for periods which exceeded 20 s, indicating foraging be-
haviour [15]. These positions were mapped onto the area
using ARCMAP and examined in relation to the bathymetry
(derived from local charts) and derivation of the energy
used for foraging (see below).

Foraging energy and behaviour were quantified using
custom-written software that identified descent, bottom and
ascent phases of cormorant dives as well as their inter-dive
pause durations. The durations of these phases were deter-
mined with respect to maximum depths reached during the
dive as were their ODBA totals and means (see [24] for details).
ODBA (in g) was calculated using the sum of the absolute
values of dynamic acceleration from each of the three spatial
axes (corresponding to surge, heave and sway) after subtracting
the static acceleration from the raw acceleration values, itself
derived using a running mean over 2 s [20] so that

ODBA = |4,| + |4,| + |4:], (2.1)

where A4,, A, and A, are the derived dynamic accelerations at
any point in time corresponding to the three orthogonal axes
of the accelerometer.

Extensive recent work has shown a linear relationship
between ODBA and metabolic rate in all species examined to
date, which includes fish [25], amphibia [26], mammals and
birds [27-32], and this has been explicitly defined in cormor-
ants for resting, diving and walking by Gomez Laich ez al. [33] as

MP = 41.310DBA + 12.09, (2.2)

where MP is the mass-specific power (W kg™ '). We used this
relationship to define a measure of the energy-based foraging
costs (¢) as the energy used per unit time spent on the seabed
according to

o 2lleall dive phases + 2lvlpimer—dive pause
3 Bottom duration

(2.3)
with units of Tkg ' s 1.

Both mean mass-specific power (W kg™ !) during foraging
and the energy used per second bottom duration (Jkg ' s™ 1)
were used to construct energy and foraging cost landscape
maps based on the bathymetry of the marine area surrounding
the colony at Punta Leon (figure 1).

In a second step, and to incorporate the costs associated
with travel from the central place (the breeding site) to the
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Figure 1. Distribution of 74 Imperial Cormorants foraging from
their colony at Punta Leon (white circle with red dot) over 4
years in relation to bottom bathymetry (depths in metres).

foraging site, the energetic costs for flight were built into a
general model. Although flight costs could theoretically be
taken from the ODBA values, as yet, no validation has
been undertaken to show that measured costs for flight
accord with the, otherwise, linear relationship between
ODBA and rate of oxygen consumption for diving and walk-
ing birds [33]. Thus, flight costs were simply taken to be
102 W kg™ ! [33] and incorporated into a time budget of
Imperial cormorants provisioning small chicks [15] by
modifying equation (2.3) so that

[(EMPallﬂight) + (EMPall dive phases + EZ\/[Pimer—dive pause)]

b= ;
> Bottomduration

(2.4)

where @ represents the mass-specific foraging costs per
second bottom time (Jkg !'s™!), incorporating all costs
incurred between leaving the colony and returning to it at
the end of the foraging period.

This model assumed that birds were limited to a total of
6 h foraging (studies at this site show means of 5.7 (s.d.
2.2) and 6.1 h (s.d. 1.3) for females and males, respectively
[15]) that flight speeds were 60 kmh™' [15], and that at
every foraging site within the area considered (figure 1),
birds would only dive there and otherwise fly directly to it
from the colony and back again at the above speeds and cal-
culated energy costs [15]. Time spent diving was derived by
subtracting flight durations (directly proportional to the dis-
tance between the colony and foraging site) from 6 h, and the
number of dive cycles executed was determined by dividing
this residual time by the dive cycle duration for the pre-
scribed depth. The mean, mass-specific power use and
energy-based foraging costs for Imperial cormorants incor-
porating the transit costs from, and to, the colony were
then calculated by summing the total energy expended for
the foraging period and dividing by 6 h, and by calculat-
ing the total energy expended for the foraging period and
dividing by the total bottom duration, respectively.

3. RESULTS
Seventy-four GPS-equipped Imperial cormorants sho-
wed considerable variation in two primary foraging
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Table 1. Relationship between dive parameters and maximum
dive depth (D) for 58 Imperial cormorants foraging during
chick-rearing at Punta Leon, Argentina between 2004 and
2008. All durations are expressed in seconds, all overall
dynamic body acceleration (ODBA) values in g and all depths
in metre. p-Values for all functions are <0.001.

parameter function r

descent duration y=0.78D + 1.6 0.97
bottom duration  y= —0.0185D% + 3.12D — 5.0 0.79
ascent duration y=0.70D+ 1.9 0.91
pause duration y=12.31%00030 0.57
descent ODBA v=0.368D + 1.59 0.91
bottom ODBA y=0.826D°° 0.66
ascent ODBA y = 1.24%0399D 0.58

parameters—depth and distance from the colony. They
dived in water depths varying between 3.8 and 62.1 m
and at distances of between 1.1 and 52.6 km from the
colony (figure 1). Detailed data on diving behaviour
from a further 58 birds showed that the durations of the
descent, bottom, ascent and inter-dive pauses were all
highly correlated with maximum depth reached during
the dive (table 1) as was the proxy for metabolic power,
ODBA (table 1). Conversion of ODBA (g) to energy
expenditure (J kg~ ' s™!) revealed that, where flight costs
from the colony were not considered, mean (mass-
specific) power use (during all periods ascribed to fora-
ging, including time resting at the surface between
dives) was highest in shallowest waters (figure 2a) but
that the energy-based foraging costs (expressed as the
costs in joules, expended over the full dive cycle, for
each second spent at the sea bed—equation (2.3))
showed a reverse trend (figure 2b). There was no obvious
relationship between the foraging areas used by birds and
depth, distance (figure 1), mean power use (figure 2a) or
simple energy-based foraging costs (considering the mean
mass-specific energy invested per second of bottom time
after incorporating all other costs involved in the dive
cycle—figure 2b). Inclusion of flight costs to determine
the effect of distance of the foraging locality from a central
place (the colony) showed that flight was critical in mod-
ulating overall power costs (figure 2¢, cf. figure 2a), while
calculation of energy-based foraging costs incorporating
both depth and distance from the colony (equation
(2.4)) indicated that birds used a virtually homogeneous
energy landscape (figure 2d, cf. figure 2b).

Within this landscape, however, birds preferentially
used the areas and depths that resulted in lower energy-
based foraging costs: consideration of the foraging costs
of real birds compared with a theoretical population of
evenly spaced individuals exploiting the available foraging
area (based on a semicircle with a radius corresponding to
the maximum shown by the tagged birds) showed that the
real Imperial cormorants had markedly lower energy-
based foraging costs than the evenly spaced individuals
(figure 3). Beyond this, where cormorants occurred,
bird density decreased linearly with increasing energy-
based foraging cost (¢, in joules per second bottom
duration) according to

bird density = 109 — 2.7¢
(r=—0.4,F =7.54,p < 0.009),
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where bird density is given by the number of birds per
100 km? and ¢ values are means for the respective grid
squares.

4. DISCUSSION

Our energy landscape for birds diving shows reduced power
costs for deeper water (figure 2a), something that is not intui-
tively obvious. However, buoyancy is a major factor affecting
energy expenditure in diving birds [34] and the higher
pressures experienced by deeper diving birds compress
respiratory and feather-associated air more so that the
effort to counteract this buoyancy is reduced [32]. In fact,
in a demonstration of this, Quintana er al. [35] calculated
that an Imperial cormorant descending the water column
at a constant speed (1.5 ms ') uses about three times as
much power when it is at a depth of 2 m as it does at 30 m.
Decreasing energy expenditure costs with depth are, how-
ever, more than compensated by decreasing time-based
efficiency. As exploitation of greater depths requires longer
dive durations owing to increased transit between the surface
and the seabed where birds forage [24], birds must also com-
pensate by increasing the bottom duration and surface
recovery period, the latter of which increases as an exponen-
tial function of dive duration [24,36]. All this makes Imperial
cormorants, and many other divers [37], rapidly less time-
efficient with increasing depth. The energy-based foraging
costs, which must equate the total energy used to maintain
and transport the bird to and from the seabed with the
time available to forage while on the seabed, reverses the
simple power used to dive (figure 2a) as a function of
depth so that depths of ca 10-30 m become the most effi-
cient (cf. figure 1 and figure 2b). In fact, cognizance of the
difference between time- and energy-based efficiency may
fundamentally change our understanding of optimum strat-
egies [20]. For example, authors examining diving capacity
in air-breathers conventionally use the proportion of time
that animals remain in the bottom phase as a fraction of
the whole dive cycle duration to measure efficiency [38]
(figure 4). The energetic equivalent of this (the fraction of
energy used in the bottom phase compared with that for
the whole dive cycle) necessarily shows an approximately
similar pattern (figure 4), because animals expend energy
all time, and therefore do so as a function of time. However,
the precise form varies according to the variation in meta-
bolic costs, which, in the case of the cormorant, changes
with depth, producing an efficiency versus depth pattern
that decreases much less rapidly with depth than the time-
based efficiency scenario (figure 4). The extent of differences
between time-based and energy-based efficiency is primarily
modulated by the amount of air held within breath-hold
diving vertebrates, which is hugely variable depending on
taxon [39,40] although thermoregulation may also play a
significant role [41].

This energy landscape scenario would be applicable only
to Imperial cormorants if they remained continuously in
the foraging zone, as many overwintering seabirds may do
[42]. However, the central place aspect of their ecology,
necessitating commuting between the colony and the fora-
ging site, means that the energetic costs of flight should be
incorporated into the energy landscape, which changes it
dramatically (figure 2¢), and particularly when the com-
plete energetic costs of foraging along the seabed are
considered (figure 2d).
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Figure 2. Distribution of foraging Imperial Cormorants (cf. figure 1) (a) with respect to the calculated mean mass-
specific power (W kg™ !) uniquely for diving at the relevant site and (b) with respect to the overall mass-specific energy

invested per second of bottom duration (Jkg !

s 1. Insets (¢) and (d) show the same as (@) and (), respectively, but

additionally incorporate the energetic costs of commuting to and from the breeding colony (shown by the white circle with

red dot).

The energy-based foraging cost translates into an effec-
tive index of necessary prey density because higher
foraging costs require higher prey densities for them to be
energetically tenable. Thus, movement of birds out to
areas with higher costs implies that the closer areas have
been depleted of prey [43—45]. Nonetheless, we would
expect the distribution of cormorants around the colony to
show generally decreasing densities of birds exploiting prey
from energetically more costly environments, as we
observed. More specifically, bird density may be expected
to follow an ideal free distribution [46] with individuals
attempting to maximize net energy gain by exploiting areas
with minimal-associated costs first [47,48]. Severe prey
depletion in areas with low-cost energy landscapes could,
in fact, result in those areas being avoided by birds, some-
thing that is not readily apparent in our observations. In
such cases, we would expect birds to populate other low-
cost energy landscape areas where prey density was not
diminished first before moving to high-cost energy land-
scapes as resources became scarcer, consistently, however,
maximizing net energy gain.
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This work points to the critical nature of the inter-
action of colony location and water depth in modulating
the coastal distribution of diving seabirds. Clearly, not
all sites are appropriate for nesting [49] and birds must
balance the advantages of nesting on a particular land
mass with the costs of foraging around it [50]. Beyond
that however, the approach provides a framework to
examine how the foraging costs of adjacent, potentially
competing colonies might interact with density to limit
bird distribution at sea [51].

Our examination of the Imperial cormorant energy
landscape is simplistic but demonstrates mechanisms for
deriving costs associated with animals operating in their
environment (cf. [7]). Although many energy landscapes
may be more complex to derive, with power values vary-
ing with parameters such as topography, terrain, substrate
and vegetation (cf. [52]), such landscapes can elucidate
spatially linked strategies adopted by animals as well as
the energetic consequences of having to change them.
This should help inform optimality models but also, per-
haps, find particular resonance in conservation science
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Figure 3. Frequency usage of particular energy costs of fora-
ging (mass-specific energy invested per second of bottom
duration) resulting from the sea areas and depths frequented
by Imperial Cormorants breeding at Punta Leon (black bars)
compared with theoretical birds foraging, regularly spaced
within the area available to Imperial Cormorants from the
colony (grey bars).
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Figure 4. Time- (black line) and energy-based (grey line)
efficiency of Imperial Cormorant foraging as a function of
depth based on the regressions shown in table 1. The
graphs show the proportion of time or energy allocated to
foraging along the seabed in relation to the total time, or
energy, used in the full dive cycle.

where the animal allocation of energies in a changing
world may be pivotal for species survival.
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